首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Consider a graph with no loops or multiple arcs with n+1 nodes and 2n arcs labeled al,…,an,al,…,an, where n ≥ 5. A spanning tree of such a graph is called complementary if it contains exactly one arc of each pair {ai,ai}. The purpose of this paper is to develop a procedure for finding complementary trees in a graph, given one such tree. Using the procedure repeatedly we give a constructive proof that every graph of the above form which has one complementary tree has at least six such trees.  相似文献   

2.
The fact that a cubic hamiltonian graph must have at least three spanning cycles suggests the question of whether every hamiltonian graph in which each point has degree at least 3 must have at least three spanning cycles. We answer this in the negative by exhibiting graphs on n=2m+1, m≥5, points in which one point has degree 4, all others have degree 3, and only two spanning cycles exist.  相似文献   

3.
It is shown that an n-edge connected graph has at least ?(n ? 1)2? pairwise edge-disjoint spanning trees. This bound is best possible in general. A maximal planar graph with four or more vertices contains two edge-disjoint spanning trees. For a maximal toroidal graph, this number is three.  相似文献   

4.
A multicolored tree is a tree whose edges have different colors. Brualdi and Hollingsworth 5 proved in any proper edge coloring of the complete graph K2n(n > 2) with 2n ? 1 colors, there are two edge‐disjoint multicolored spanning trees. In this paper we generalize this result showing that if (a1,…, ak) is a color distribution for the complete graph Kn, n ≥ 5, such that , then there exist two edge‐disjoint multicolored spanning trees. Moreover, we prove that for any edge coloring of the complete graph Kn with the above distribution if T is a non‐star multicolored spanning tree of Kn, then there exists a multicolored spanning tree T' of Kn such that T and T' are edge‐disjoint. Also it is shown that if Kn, n ≥ 6, is edge colored with k colors and , then there exist two edge‐disjoint multicolored spanning trees. © 2006 Wiley Periodicals, Inc. J Graph Theory 54: 221–232, 2007  相似文献   

5.
We consider several constructions of edge critical 4-chromatic graphs which can be written as the union of a bipartite graph and a matching. In particular we construct such a graph G with each of the following properties: G can be contracted to a given critical 4-chromatic graph; for each n ≥ 7, G has n vertices and three matching edges (it is also shown that such graphs must have at least \({{8n} \over 5}\) edges); G has arbitrary large girth.  相似文献   

6.
In the complete graph on n vertices, when each edge has a weight which is an exponential random variable, Frieze proved that the minimum spanning tree has weight tending to ζ(3) = 1/13 + 1/23 + 1/33 +… as n → ∞. We consider spanning trees constrained to have depth bounded by k from a specified root. We prove that if k ≥ log2 logn+ω(1), where ω(1) is any function going to ∞ with n, then the minimum bounded-depth spanning tree still has weight tending to ζ(3) as n → ∞, and that if k < log2 logn, then the weight is doubly-exponentially large in log2 logn ? k. It is NP-hard to find the minimum bounded-depth spanning tree, but when k≤log2 logn?ω(1), a simple greedy algorithm is asymptotically optimal, and when k ≥ log2 logn+ω(1), an algorithm which makes small changes to the minimum (unbounded depth) spanning tree is asymptotically optimal. We prove similar results for minimum bounded-depth Steiner trees, where the tree must connect a specified set of m vertices, and may or may not include other vertices. In particular, when m=const×n, if k≥log2 logn+ω(1), the minimum bounded-depth Steiner tree on the complete graph has asymptotically the same weight as the minimum Steiner tree, and if 1 ≤ k ≤ log2 logn?ω(1), the weight tends to $(1 - 2^{ - k} )\sqrt {8m/n} \left[ {\sqrt {2mn} /2^k } \right]^{1/(2^k - 1)}$ in both expectation and probability. The same results hold for minimum bounded-diameter Steiner trees when the diameter bound is 2k; when the diameter bound is increased from 2k to 2k+1, the minimum Steiner tree weight is reduced by a factor of $2^{1/(2^k - 1)}$ .  相似文献   

7.
For a subset W of vertices of an undirected graph G, let S(W) be the subgraph consisting of W, all edges incident to at least one vertex in W, and all vertices adjacent to at least one vertex in W. If S(W) is a tree containing all the vertices of G, then we call it a spanning star tree of G. In this case W forms a weakly connected but strongly acyclic dominating set for G. We prove that for every r ≥ 3, there exist r-regular n-vertex graphs that have spanning star trees, and there exist r-regular n-vertex graphs that do not have spanning star trees, for all n sufficiently large (in terms of r). Furthermore, the problem of determining whether a given regular graph has a spanning star tree is NP-complete.  相似文献   

8.
By Petersen's theorem, a bridgeless cubic multigraph has a 2-factor. Fleischner generalised this result to bridgeless multigraphs of minimum degree at least three by showing that every such multigraph has a spanning even subgraph. Our main result is that every bridgeless simple graph with minimum degree at least three has a spanning even subgraph in which every component has at least four vertices. We deduce that if G is a simple bridgeless graph with n vertices and minimum degree at least three, then its line graph has a 2-factor with at most max{1,(3n-4)/10} components. This upper bound is best possible.  相似文献   

9.
In a graph in which each edge has two weights, the max + sum spanning tree problem seeks a spanning tree that has the minimum value for the combined total of the maximum of one of the edge weights and the sum of the other weights among all the spanning trees in the graph. Exploiting an efficient data structure, an O(m log n) algorithm is presented for solving this problem. This improves the currently known bound of O(mn).  相似文献   

10.
A class of antimagic join graphs   总被引:1,自引:0,他引:1  
A labeling f of a graph G is a bijection from its edge set E(G) to the set {1, 2, . . . , |E(G)|}, which is antimagic if for any distinct vertices x and y, the sum of the labels on edges incident to x is different from the sum of the labels on edges incident to y. A graph G is antimagic if G has an f which is antimagic. Hartsfield and Ringel conjectured in 1990 that every connected graph other than K 2 is antimagic. In this paper, we show that if G 1 is an n-vertex graph with minimum degree at least r, and G 2 is an m-vertex graph with maximum degree at most 2r-1 (m ≥ n), then G1 ∨ G2 is antimagic.  相似文献   

11.
Let k be a non-negative integer. A branch vertex of a tree is a vertex of degree at least three. We show two sufficient conditions for a connected claw-free graph to have a spanning tree with a bounded number of branch vertices: (i) A connected claw-free graph has a spanning tree with at most k branch vertices if its independence number is at most 2k + 2. (ii) A connected claw-free graph of order n has a spanning tree with at most one branch vertex if the degree sum of any five independent vertices is at least n ? 2. These conditions are best possible. A related conjecture also is proposed.  相似文献   

12.
In this article, we prove that a line graph with minimum degree δ≥7 has a spanning subgraph in which every component is a clique of order at least three. This implies that if G is a line graph with δ≥7, then for any independent set S there is a 2‐factor of G such that each cycle contains at most one vertex of S. This supports the conjecture that δ≥5 is sufficient to imply the existence of such a 2‐factor in the larger class of claw‐free graphs. It is also shown that if G is a claw‐free graph of order n and independence number α with δ≥2n/α?2 and n≥3α3/2, then for any maximum independent set S, G has a 2‐factor with α cycles such that each cycle contains one vertex of S. This is in support of a conjecture that δ≥n/α≥5 is sufficient to imply the existence of a 2‐factor with α cycles, each containing one vertex of a maximum independent set. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 251–263, 2012  相似文献   

13.
A digraph D is strong if it contains a directed path from x to y for every choice of vertices x,y in D. We consider the problem (MSSS) of finding the minimum number of arcs in a spanning strong subdigraph of a strong digraph. It is easy to see that every strong digraph D on n vertices contains a spanning strong subdigraph on at most 2n−2 arcs. By reformulating the MSSS problem into the equivalent problem of finding the largest positive integer kn−2 so that D contains a spanning strong subdigraph with at most 2n−2−k arcs, we obtain a problem which we prove is fixed parameter tractable. Namely, we prove that there exists an O(f(k)nc) algorithm for deciding whether a given strong digraph D on n vertices contains a spanning strong subdigraph with at most 2n−2−k arcs.We furthermore prove that if k≥1 and D has no cut vertex then it has a kernel of order at most (2k−1)2. We finally discuss related problems and conjectures.  相似文献   

14.
The interval number of a graph G, denoted i(G), is the least positive integer t for which G is the intersection graph of a family of sets each of which is the union of at most t closed intervals of the real line R. Trotter and Harary showed that the interval number of the complete bipartite graph K(m,n) is ?(mn + 1)(m + n)?. Matthews showed that the interval number of the complete multipartite graph K(n1,n2,…,np) was the same as the interval number of K(n1,n2) when n1 = n2 = ? = np. Trotter and Hopkins showed that i(K(n1,n2,…,np)) ≤ 1 + i(K(n1,n2)) whenever p ≥ 2 and n1n2≥ ? ≥np. West showed that for each n ≥ 3, there exists a constant cn so that if pcn,n1 = n2?n ?1, and n2 = n3 = ? np = n, then i(K(n1,n2,…,np) = 1 + i(K(n1, n2)). In view of these results, it is natural to consider the problem of determining those pairs (n1,n2) with n1n2 so that i(K(n2,…,np)) = i(K(n1,n2)) whenever p ≥ 2 and n2n3 ≥ ? ≥ np. In this paper, we present constructions utilizing Eulerian circuits in directed graphs to show that the only exceptional pairs are (n2 ? n ? 1, n) for n ≥ 3 and (7,5).  相似文献   

15.
Paul Erd?s conjectured that every K 4-free graph of order n and size ${k + \lfloor n^2/4\rfloor}$ contains at least k edge disjoint triangles. In this note, we prove that such a graph contains at least 32k/35 + o(n 2) edge disjoint triangles and prove his conjecture for k ≥  0.077n 2.  相似文献   

16.
A {1, 3, …,2n ? 1}-factor of a graph G is defined to be a spanning subgraph of G, each degree of whose vertices is one of {1, 3, …, 2n ? 1}, where n is a positive integer. In this paper, we give a sufficient condition for a graph to have a {1, 3, …, 2n ? 1}-factor.  相似文献   

17.
An edge of a k-connected graph is said to be k-contractible if its contraction results in a k-connected graph. A k-connected non-complete graph with no k-contractible edge, is called contraction critical k-connected. An edge of a k-connected graph is called trivially noncontractible if its two end vertices have a common neighbor of degree k. Ando [K. Ando, Trivially noncontractible edges in a contraction critically 5-connected graph, Discrete Math. 293 (2005) 61-72] proved that a contraction critical 5-connected graph on n vertices has at least n/2 trivially noncontractible edges. Li [Xiangjun Li, Some results about the contractible edge and the domination number of graphs, Guilin, Guangxi Normal University, 2006 (in Chinese)] improved the lower bound to n+1. In this paper, the bound is improved to the statement that any contraction critical 5-connected graph on n vertices has at least trivially noncontractible edges.  相似文献   

18.
A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge.In this paper,we prove that every 1-planar graph G with maximum degree Δ(G)≥12 and girth at least five is totally(Δ(G)+1)-colorable.  相似文献   

19.
Cycle embedding in star graphs with conditional edge faults   总被引:1,自引:0,他引:1  
Among the various interconnection networks, the star graph has been an attractive one. In this paper, we consider the cycle embedding problem in star graphs with conditional edge faults. We show that there exist cycles of all even lengths from 6 to n! in an n-dimensional star graph with ?2n-7 edge faults in which each vertex is incident with at least two healthy edges for n?4.  相似文献   

20.
Given a k‐arc‐strong tournament T, we estimate the minimum number of arcs possible in a k‐arc‐strong spanning subdigraph of T. We give a construction which shows that for each k ≥ 2, there are tournaments T on n vertices such that every k‐arc‐strong spanning subdigraph of T contains at least arcs. In fact, the tournaments in our construction have the property that every spanning subdigraph with minimum in‐ and out‐degree at least k has arcs. This is best possible since it can be shown that every k‐arc‐strong tournament contains a spanning subdigraph with minimum in‐ and out‐degree at least k and no more than arcs. As our main result we prove that every k‐arc‐strong tournament contains a spanning k‐arc‐strong subdigraph with no more than arcs. We conjecture that for every k‐arc‐strong tournament T, the minimum number of arcs in a k‐arc‐strong spanning subdigraph of T is equal to the minimum number of arcs in a spanning subdigraph of T with the property that every vertex has in‐ and out‐degree at least k. We also discuss the implications of our results on related problems and conjectures. © 2004 Wiley Periodicals, Inc. J Graph Theory 46: 265–284, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号