首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Collisional energy transfer from CO23) to chloromethanes was studied in the temperature range 300–700 K using the laser induced fluoresce technique. Theoretical calculations using SSH and SB theories were carried out to identify the CO23) deactivation process. The experimental probabilities were found to decrease linearly with increasing number of substituted chlorine atoms.  相似文献   

2.
The fluorescence spectrum of 7-hydroxycoumarine in ethanol excited by a pulsed tunable dye laser reveals different features when excitation proceeds via one-photon and two-photon absorption. In the former case the spectrum shows two peaks delayed in time by approximately 2 ns and characterized by different lifetimes. The relative intensity of these peaks is unaffected by significant changes in the dye concentration and therefore the formation of an “exciplex” species seems to be here confirmed. In the spectrum obtained by two-photon excitation the second peak at longer wavelength is absent. Results are presented for both room and liquid nitrogen temperatures as well as for other solvents such as glycerin and EPA. These results are considered to be important for the evaluation of absolute two-photon cross sections where the quantum efficiencies of one- and two-photon processes are assumed to be the same.  相似文献   

3.
Studies of the risetime of laser induced 16μ fluorescence in SF6 show the rapid equilibration (1.5 μsec torr) among the excited vibrational states. The subsequent decay of fluorescence consists of 2 exponentials. The faster of these is due to vibration-translation energy transfer (160μsec torr) and the slower is due to thermal cooling of translationally hot gas.  相似文献   

4.
Collisional energy transfer from CO2 to SO2 was studied subsequent to pumping of CO23) by a Q-switched laser. The measurements were made in the temperature range 300–800 K and in the pressure range 1–30 Torr. The fluorescence from the ν3 level of CO2 was monitored with the help of a Ge:Au detector at 77 K with an estimated response time of ≈2 μs. The probability of the energy transfer was found to be increasing with increasing temperature. The probable kinetic models for the V---V relaxation pathways were discussed and the experimentally measured energy transfer rate is related to the cross-over transfer processes. Theoretical calculations using both a simple SSH-breathing sphere model and the Sharma-Brau theory were carried out to evaluate the probabilities of the involved cross-over energy transfer processes and the results were compared with the experimental rates.  相似文献   

5.
Using the method of laser fluorescence, inelastic collisions with rare gas atoms of electronically excited 7Li2 molecules in the υ = 2 and 4 levels were studied. Vibrational transitions ranging from Δ = +2 to ?4 were observed. The simultaneous rotational transitions were completely resolved, and detailed rate constants kΔυ, ΔJ for specific collision- induced quantum jumps Δυ, ΔJ were determined. The effect of secondary rotational relaxation was eliminated by an extrapolation to zero pressure. By integration over ΔJ, rate constants kΔυ, were found. They are, within the error limits, independent of the collision partner and on the initial υ (2 or 4) and depend rather weakly on Δυ. These findings are compared with theoretical results from various methods, generally based on a collinear collision model. The apparent disagreement in all respects suggests strongly the importance of rotational degrees of freedom in the collision. Experimental evidence for this is the large amount of V — R transfer observed, which about equals the V — T transfer. The mean cross sections σ(Δυ) for specific vibrational transitions Δυ range between 6 and 15 A2, among the largest ever observed.  相似文献   

6.
The v3 mode of CH3F was excited by irradiation with a TEA CO2 laser pulse, and the time-resolved emission spectra of the v3 overtone and the 3 μ;m region were observed. The results indicate that the population of the v4 level behaves kinetically in the same manner as that of 2v3 or 3v3. This suggests an efficient energy transfer between these levels.  相似文献   

7.
The laser and fluorescence behavior was studied for the mixed dye system containing various concentrations of 3,3′-diethylthiacarbocyanine iodide and rhodamine 6G. A new way of confirming the occurrence of energy transfer is presented on the basis of the reabsorption effect.  相似文献   

8.
In a molecular beam the effects of vibrational pumping of SF63 = 948 cm?1) are studied, using a line-tunable cw CO2 laser. Intracavity spontaneous Raman scattering is used for analysis. For excitation in the collision regime (xE/D ≤ 1), a thermal redistribution of the ν3 excitation over all vibrational modes is found, together with an average absorption up to six photons per molecule. The infrared absorption profile shows a red-shift of 6 cm?1. For excitation in the relatively rare collision regime (xE/D ? 4), a structured non-thermal ν1 Raman spectrum is observed, especially in the case of seeded molecular beams (10% in He). The observed hot-band peaks can be explained in terms of single-photon absorptions and collision-induced near-resonant V-V energy transfer, leading to single, double and triple excitations of the ν3 mode. The value of Trot in the beam is found to influence sensitively the non-resonant energy-transfer rate [e.g. hν3(948 cm?1)+ΔEroth4 + ν6)(962 cm?1) relative to the near-resonant transfer rate (hν3 + hν3 → 2hν3 + 3.5 cm?1)].  相似文献   

9.
The (0,0,0) 2Π3/2−(1,0,0) 2Π3/2 bandhead of 11BO2 has been studied with a tunable dye laser. Rotational transitions between J = 1.5 and J = 33.5 were assigned. For the measurements a combination of photoexcitation and laser induced fluorescence spectroscopy has been used; the method is extremely useful for the assignment and deconvolution of unresolved complex bands.  相似文献   

10.
Infrared—ultraviolet double resonance spectroscopy is used to demonstrate rapid collision-induced V-V transfer between the v6 and v4 vibrational manifolds of D2CO. The rate of transfer is at least gas-kinetic and is explained in terms of Coriolis coupling and rotationally specific, quasi-resonant relaxation channels  相似文献   

11.
V—V and V—T/R rates of ν1, ν2, ν3, ν6, ν8, and ν9 of CH2D2 were measured and are reported. The deactivation efficiencies of rare gas collision partners were measured and calculated by SSH theory, the results are reported and discussed. Possible V—V pathways are presented and discussed.  相似文献   

12.
The jackknife test of Rothstein et al. is applied to discrimination between several different models used to compute the rotationally inelastic cross sections for the Ar-N2 system. The modified exponential models are the best models, except for the case where the energy gap is small, when power laws are best.  相似文献   

13.
The applicability of the classical trajectory equations in three-dimensional calculations of rot/vib transitions in the He-H2 system has been investigated. The vibrational relaxation time is calculated and the agreement with experimental data is excellent for temperatures above 250 K. The method has been used to determine the differential cross-sections for vib/rot excitation at 1.09 eV total energy and comparison is made with recent quantum mechanical effective potential calculations.  相似文献   

14.
Results of infrared laser induced fluorescence studies on cyclopropane are presented. Molecules were excited from the ground state to the v10 level of cyclopropane using a Q-switched CO2 laser operating on either the P(14) or P(20) transition of the 9.6 μ branch. Fluorescence was observed from the v6, v8, v10 + v11 and v5 + v10 levels of cyclopropane. The self-deactivation of vibrationally excited cyclopropane through V → T/R processes was found to have a rate of 8.0 ± 1.5 ms?1 torr?1. Deactivation by rare gas collisions was also studied with comparison to simple V → T and V → R theories. V → V equilibration processes are discussed involving the v6, v8, v10, v11, and v10 + v11 levels.  相似文献   

15.
The recent semi-classical approach of Shin is applied to He-H2 vibrationally-inelastic collisions using the Gordon-Secrest potential surface. The calculated de-excitation cross sections, when compared to accurate coupled-states results are too large, particularly at low collision energies. As a result the rate constants for vibrational relaxation are artificially enhanced at low temperature, leading to a fortuitous agreement with experiment.  相似文献   

16.
《Chemical physics》1986,105(3):449-469
Experimental investigations of mixtures containing predominantly N2O and small amounts of SF6 demonstrate that rapid interspecies pooling of vibrational energy can occur to produce a pulse of excess vibrational energy in the ν3 mode of N2O following excitation of SF6 by a Q-switch CO2 laser. This increased population in the ν3 mode of N2O can occur on a time scale shorter than that on which collision-induced VV processes redistribute vibrational energy among the modes of SF6. The equilibration takes place in three discernible stages: (1) a rapid pooling of energy between a limited number of levels of the SF6 and N2O, then (2) a slower collision-dependent VV process that equilibrates all the vibrational modes in the system, with (3) a subsequent VT,R process that returns the system to its initial state. Argon is shown to accelerate selectively process (2) with an efficiency consistent with the previously measured ability of argon to accelerate the VV process in pure SF6. The experimental evidence indicates that other modes in N2O do not become involved on the time scale on which direct crossing to ν3 occurs. Additionally, on the time scale preceding the SF6 VV equilibration, a fast collision-dependent process competes with the transfer of excitation to N2O. The production of a pulse of excitation in N2O is eliminated when isotopically substituted N2O (14N15NO) is used instead under the same conditions because the crossing rate to the ν3 mode of N2O is decreased sufficiently when 15N is substituted for 14N that it no longer can compete with the VV equilibration among the modes in SF6.  相似文献   

17.
Integral cross sections for pure rotational and vibrational-rotational excitation of H2(X1Σ+g) by Li+(1S) impact are computed by close-coupling methods at 0.2, 0.6, and 1.2 eV in the c.m. system using vibrational functions that are numerical solutions of the one-dimensional radial Schrödinger equation for harmonic, Morse, and adiabatically corrected Kolos-Wolniewicz (KW) potential functions. Comparison of results employing KW and Morse functions shows excellent agreement for all transitions studied. Findings using harmonic oscillator functions, however, differ noticeably from KW and Morse values for vibrational (0 → 1) and very large rotational (Δj = 10) transitions, but are satisfactory for lower order (0 → 2, 4, 6, 8) rotational transitions.  相似文献   

18.
The compound EuAlF5, as well as the solid solutions Ca0.19(1)Eu0.81(1)AlF5, Sr0.15(1)Eu0.85(1)AlF5, Sr0.55(1)Eu0.45(1)AlF5, Sr0.77(1)Eu0.23(1)AlF5, and Ba0.62(1)Eu0.38(1)AlF5, crystallize in colorless tetragonal columns. These have been prepared by solid state reactions at 900°C, starting from mixtures of the binary fluorides. According to Vegard's rule the solid solution Sr1−xEuxAlF5 shows a linear dependence of the crystal volume on the molar ratio Eu/Sr. All crystal structures have been refined from single-crystal diffractometer data. EuAlF5 and the M1−xEuxAlF5 (M=Ca, Sr) compounds obtained are isotypic with β-SrAlF5. They crystallize in a superstructure in space group I41/a (no. 88) with 64 formula units and lattice parameters a≈19.9 Å, c≈14.3 Å. The structure is characterized by chains of trans-corner-sharing [AlF4/2F2/1] and branched [AlF5/1F1/2] octahedra forming a channel structure. Inside the channels isolated ordered dimeric units [AlF4/1F2/2]2 are located. The divalent metal atoms show coordination numbers 8 and 9; they connect the [AlF6] octahedra into a three-dimensional structure. Ba0.62(1)Eu0.38(1)AlF5 is isotypic with the corresponding Sr compound Ba0.43(1)Sr0.57(1)AlF5, and it crystallizes with 16 formula units and lattice parameters a=14.3860(7) Å, c=7.2778(3) Å in space group I4/m (no. 87). The network structure is identical with that of EuAlF5. Instead of the dimeric units, infinite chains [AlF4/1F2/2] of trans-corner-sharing [AlF6] octahedra extending along the c- axis are located inside the channels. The bridging fluorine atoms of this chain show large anisotropic displacement parameters, but no superstructure reflections have been observed for this compound.  相似文献   

19.
We have theoretically investigated the population transfer from the initial ground rovibrational level v(g)=0, J(g)=0 to the final rovibrational levels v(f)=1,2, J(f)=0 of the ground electronic state X (1)Sigma(g) (+) via the resonant intermediate level v(i)=6, J(i)=0 of the excited electronic state EF (1)Sigma(g) (+) of H(2) molecule by (2+2)-photon stimulated hyper-Raman passage (STIHRP). The density matrix technique has been employed to evaluate the population transfer to the final target levels using linearly chirped pump and Stokes laser pulses with different chirp rates. Both the pulses are considered to have the same temporal shape, pulse width, and linear parallel polarizations. We have studied in detail the dependence of the population transfer on the set of laser parameters for pulse (peak) intensities in the ranges of 1.5 x 10(11)-1.0 x 10(12) and 1.0 x 10(12)-7.0 x 10(12) W/cm(2). The corresponding pulse widths (full width at half maximum) are of the order of 115-200 and 15-30 ps. We have found that the chirp rate parameters can be optimized to achieve almost complete population transfer from the ground (g) to the final (f) target levels. This, to our knowledge, is the first application of a (2+2)-photon STIHRP process with chirpings to a model molecular system (H(2)). The study demonstrates the suitability of the chirped (2+2)-photon STIHRP technique for selective and almost total inversion of vibrational population in a diatomic molecule.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号