首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The measurement of electron temperature and electron density from line and continuum radiation in Ar plasmas used for spectroscopic purposes is discussed. The correct equations for the calculation of these parameters from experimentally observable quantities are identified. Such expressions yield the theoretical spectral irradiance expected from line and continuum radiation. To aid calculations, grouped constants from these equations are calculated using SI units of measure. The sources of accurate values for the parameters and correction factors appearing in the irradiance equations are listed. In addition the approximations made in order to simplify electron temperature and electron density determinations are reviewed. Practical aspects of making accurate measurements of these parameters in Ar plasmas are considered. Theoretical plots of line to continuum emission ratio vs electron temperature and of continuum irradiance vs electron density are presented as an illustration using parameters appropriate for Ar emission at 430 nm and the spectrally adjacent continuum.  相似文献   

2.
Gas-phase synthesis of fine solid particles leads to fractal-like structures whose transport and light scattering properties differ from those of their spherical counterparts. Self-preserving size distribution theory provides a useful methodology for analyzing the asymptotic behavior of such systems. Apparent inconsistencies in previous treatments of the self-preserving size distributions in the free molecule regime are resolved. Integro-differential equations for fractal-like particles in the continuum and near continuum regimes are derived and used to calculate the self-preserving and quasi-self-preserving size distributions for agglomerates formed by Brownian coagulation. The results for the limiting case (the continuum regime) were compared with the results of other authors. For these cases the finite difference method was in good in agreement with previous calculations in the continuum regime. A new analysis of aerosol agglomeration for the entire Knudsen number range was developed and compared with a monodisperse model; Higher agglomeration rates were found for lower fractal dimensions, as expected from previous studies. Effects of fractal dimension, pressure, volume loading and temperature on agglomerate growth were investigated. The agglomeration rate can be reduced by decreasing volumetric loading or by increasing the pressure. In laminar flow, an increase in pressure can be used to control particle growth and polydispersity. For D(f)=2, an increase in pressure from 1 to 4 bar reduces the collision radius by about 30%. Varying the temperature has a much smaller effect on agglomerate coagulation.  相似文献   

3.
The nature of a pure Ar continuum observed in ICP-AES has been studied in the 400–700 nm range. The radiative recombination is predominant below 500 nm, but bremsstrahlung must be considered above 500 nm. The electron temperature Te deduced from the ratio of an Ar line to the adjacent continuum is about 10,000 K, which is significantly different from the excitation temperatures previously measured in this source. The electron number density (ne) determined from the continuum is in good agreement with the value determined from the Stark effect on Ar 1549.5 nm line and about 5 × 1020 m?3. The continuum varies with the input power and the carrier gas flow rate. This is mainly due to the variation of ne.  相似文献   

4.
We report microscopic calculations of free energies and entropies for intramolecular electron transfer reactions. The calculation algorithm combines the atomistic geometry and charge distribution of a molecular solute obtained from quantum calculations with the microscopic polarization response of a polar solvent expressed in terms of its polarization structure factors. The procedure is tested on a donor–acceptor complex in which ruthenium donor and cobalt acceptor sites are linked by a four-proline polypeptide. The reorganization energies and reaction energy gaps are calculated as a function of temperature by using structure factors obtained from our analytical procedure and from computer simulations. Good agreement between two procedures and with direct computer simulations of the reorganization energy is achieved. The microscopic algorithm is compared to the dielectric continuum calculations. We found that the strong dependence of the reorganization energy on the solvent refractive index predicted by continuum models is not supported by the microscopic theory. Also, the reorganization and overall solvation entropies are substantially larger in the microscopic theory compared to continuum models.  相似文献   

5.
The photodissociation of iodine has been studied in the gas phase by laser flash photolysis. The decrease of the quantum yield with increasing ethane and propane pressure has been interpreted in terms of the cage effect. As the temperature is increased a less pronounced cage effect is observed. The trends in the measured quantum yields with changing temperature and pressure agree with model calculations for dissociation in a viscous continuum. However the simple model applied is not useful for quantitative predictions. A small decrease of the second order rate constant for iodine atom recombination has been observed with increasing temperature.  相似文献   

6.
Optical emission spectroscopic (OES) measurements are acquired by collecting absolute line and continuum emission from a hydrogen/methane plasma (300 sccm H2, 3 sccm CH4, 40–70 torr, 1600–3200 W) used for diamond deposition. The experimental results are used in tandem with numerical modeling to infer plasma parameters of interest. Numerical solutions for a microwave chemical vapor deposition (CVD) reactor are generated by coupling solutions of the Boltzmann equation and the electron energy equation to a collisional-radiative model (CRM). Results indicate that the electron-neutral free-free emission, which depends strongly on neutral density, electron density, and electron temperature, is the dominant source of continuum emission. All numerical solutions are found to be inconsistent with the experimentally measured continuum emission. A meaningful interpretation, however, is possible if the electron-H2 cross-section, used for calculating electron-neutral free-free continuum emission, is increased by between 4 and 20 above the momentum cross-section value. We believe that such an increase is justified because of enhanced energy exchange in electron-molecule interactions.  相似文献   

7.
This paper focuses on the interpretation of the origin of the continuum radiation in Laser Induced Plasma (LIP) emission spectra, a subject that has received little consideration in the literature when compared to the analysis of the line emission spectrum. The understanding of the spectral peculiarities observed immediately after the laser pulse, when the continuum radiation prevails on discrete emission lines, can be extremely important to retrieve the initial conditions of LIP and to correlate the produced plasma to the ablation mechanism. In this work, in addition to a qualitative interpretation of the LIP continuum in the initial stage of expansion, a methodology is proposed for a better measurement of the atomic temperature in the expansion stage of the LIP. Such methodology is based on the analysis of the combined Boltzmann and Planck plots. The results obtained stress once again the importance of considering non equilibrium effects in the initial stage of LIP expansion.  相似文献   

8.
This article discusses two measurement techniques for temperature determination of laser-induced plasmas in a gas at pressures relevant for combustion engines. Plasmas induced by laser breakdown in air at initial pressures ranging from 0.3 MPa to 2.5 MPa are investigated using optical spectroscopy. Results for 0.8 MPa, 1.2 MPa and 1.6 MPa are reported here. Due to the elevated pressure, a significant contribution from continuum radiation is apparent. The first temperature measurement technique relies on the interpretation of the continuum emission. The second technique is based on the line emissions from different elements and ionization stages in the plasma and is implemented with the multi-element Saha-Boltzmann plot method. The methodology may be applicable for temperature measurements under various conditions, e.g., for plasmas in high pressure gas environments such as in industrial applications of laser-induced breakdown spectroscopy or for plasma sources for illumination purposes. We investigate optimizations of laser-induced spark ignition. The energy released in the laser-induced plasma is determined based on temperature measurements.  相似文献   

9.
We have developed the Born-Green-Yvon (BGY) integral equation theory for investigating the equilibrium properties of fluids and their mixtures both on the lattice and in the continuum. Using the continuum theory we have studied hard sphere fluids over a range in density having chain lengths between one and fifty sites. We have also investigated the collapse transition of a square well chain and a square well ring, each having up to four hundred sites, and have predicted the theta temperature for these systems. Turning to the case of a dilute (hard-sphere) solution we have been able to show the effect of solvation on a hard sphere chain, and captured the dependence of this effect on the ratio of hard sphere diameters of the solvent and chain segments. In all the continuum studies we have found good to excellent agreement with simulation results. We have also derived a lattice BGY theory which, while less sophisticated than the continuum version, has the advantage of producing simple closed-form expressions for thermodynamic properties of interest. This theory is capable of exhibiting the full range of miscibility behaviour observed experimentally, including upper and lower critical solution temperatures and closed-loop phase diagrams. We find that the theory does an excellent job of fitting to different kinds of experimental data and, making use of the parameters derived from fits to pure component data alone, we have been able to predict properties ranging from pure fluid vapour pressures and critical temperatures to changes in the volume and enthalpy on mixing as well as coexistence curves for solutions.  相似文献   

10.
11.
The laws of thermodynamics provide a clear concept of the temperature for an equilibrium system in the continuum limit. Meanwhile, the equipartition theorem allows one to make a connection between the ensemble average of the kinetic energy and the uniform temperature. When a system or its environment is far from equilibrium, however, such an association does not necessarily apply. In small systems, the regression hypothesis may not even apply. Herein, it is shown that in small nonequilibrium systems, the regression hypothesis still holds, though with a generalized definition of the temperature. The latter must now be defined for each such manifestation.  相似文献   

12.
This paper presents results demonstrating the role of temperature and specific ions in mediating attraction between polymer-coated colloids and determining their equilibrium phase behavior. In particular, theoretical predictions of continuum van der Waals attraction between poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO)-coated polystyrene colloids are used to explain measured temperature and specific ion-dependent fluid-gel transitions in dispersions of these particles. Building on previous studies of PEO-PPO-PEO-coated polystyrene colloids dispersed in aqueous NaCl media, this work reports rheologically measured fluid-gel transitions as a function of temperature and NaCl/MgSO4 composition. Adhesive-sphere predictions of percolation thresholds are fit to measured fluid-gel data by allowing the adsorbed copolymer layer thickness as a single adjustable parameter. This allows the attraction between the PEO-PPO-PEO layers to be interpreted as a function of temperature and NaCl/MgSO4 composition. Quantitative predictions of a polymeric van der Waals attraction associated with the layer collapse in diminishing solvent conditions provides a simple mechanism for explaining the measured fluid-gel data as a dynamic percolation transition. Ultimately, this work identifies the importance of continuum polymeric van der Waals attraction for explaining specific ion-dependent phenomena.  相似文献   

13.
A theoretical study on the properties and molecular level structure of the very important green solvent methyl lactate is carried out in the gas phase and methanol and water solutions, with the solvent treated both explicitly and as a continuum. Torsional barriers giving rise to different conformers by rotation of the hydroxyl and methyl groups were analyzed using density functional theory (DFT) to establish the most stable conformer both in gas phase and solution. DFT computations on lactate dimers were also done to study short-range features, and the effect of the surrounding solvent on intra- and intermolecular hydrogen bonding was analyzed according to the polarizable continuum model approach. We have also studied lactate/water and lactate/methanol small clusters together with the corresponding binding energies. Moreover, classical molecular dynamics simulations (MD) were carried out to study medium- and large-range effects at lower computational cost. MD simulations at different pressure and temperature conditions on pure lactate were carried out, and mixtures with water and methanol of different compositions were also studied. Structural information, analyzed through the radial distribution functions, together with dynamic aspects of pure and mixed fluids were considered. The intramolecular hydrogen bonding ability of methyl lactate together with the possibility of homo- and hetero-intermolecular association determines the behavior of this molecule in pure fluids or in mixed.  相似文献   

14.
Newtonian and non‐Newtonian liquids widely characterize continuum and non‐continuum models for flows, thus, viscous (continuum) and drop wise (non‐continuum) flows of water and aqueous nucleotides (2‐deoxy adenosine‐DOA, thymidine‐TMD) and nucleosides (guanosine monophosphate‐GMP, adenosine triphosphate‐ATP) with integral unites‐2‐deoxy ribose‐DOR (referred as DNA bases and sugars) have been studied with Survismeter. Time data for viscous (t and drop wise (dt) flows along with drop counts (n) for aqueous solutions of 0.4–1.4 millimol (mm) DNA base and sugars with survismetere at 288.15, 293.15, and 298.15 K are measured for viscosities and surface tension, respectively. The t and n are fitted in Mansingh equation for Friccohesity (σ) calculation that determines dipole moment (µ). The t, dt, and n data are measured for water from 15 to 70°C at an interval of 5°C for standard equation for dipole moment calculation. The t, dt and n values decrease with temperature where the σ is directly proportional to μ values with slight increase with compositions and decreases with temperatures. A continuous decrease in μ values with compositions is noted with slightly higher decrease at 288.15 with both millimol and temperature. The higher decrease with temperatures weakens Coulombic forces ((q1 · q2)/r2, with charges q1 and q2, and radii r)) where σ increase.  相似文献   

15.
曹志霁  莫亦荣  林梦海  张乾二 《化学学报》2004,62(18):1683-1688
分别采用分子簇模型、连续介质模型和离散-连续组合模型研究了XH-NH3(X=F,Cl,Br)分子内质子传递的溶剂效应.结果表明,对于弱酸性化合物FH-NH3,其溶剂效应主要为短程作用,3个H2O分子即可使其发生质子传递,而简单的连续介质模型得到的仍为分子化合物形式,需进一步包含溶剂效应短程作用.对于强酸性化合物ClH-NH3和BrH-NH3,较弱的溶剂效应即可促使其发生质子传递,分子簇模型和连续介质模型均可合理描述,且与离散-连续组合模型的结果相近.离散-连续组合模型既在从头算水平考虑了溶质分子和第一溶剂化层中溶剂分子间的短程作用,又包含了溶剂效应的长程静电作用,能更准确地描述溶剂化作用,且对弱酸性化合物和强酸性化合物体系均适用.  相似文献   

16.
The depopulation-repopulation kinetics of ground-state crystal violet in glycerol at room temperature has been investigated. A D2O generated picosecond continuum served as a probe source and a 530 nm single pulse as an excitation source. The repopulation rate varies with probe wavelength; this dependence is ascribed to the presence of two rotamers of crystal violet.  相似文献   

17.
DFT calculations were performed to determine the effects of ethereal solvents on the aggregation state of lithium dialkylaminoborohydrides (LABs). The calculations included dimerization energies in the gas phase, with continuum solvation only, microsolvation with coordinating ethereal ligands, and a combination of the microsolvation and continuum models. The continuum model alone overestimates the stability of the dimers, apparently due to the lack of steric effects from the coordinating ethereal ligands. The use of the combined microsolvation and continuum solvation models predicts lithium dimethylaminoborohydride to be a mixture of monomer and dimer in THF, and more sterically hindered lithium aminoborohydrides to exist primarily as monomers. The kinetics of amination of 1-chlorodecane by lithium dimethylaminoborohydride showed no detectable change in reaction rate with time, suggesting that the LAB reagent may exist primarily as a monomer in THF.  相似文献   

18.
19.
The G band in Raman spectra of single-wall carbon nanotube (SWNT) bundles is studied between 3 and 500 K. The G band is best fit with five Lorentzian lines and one Breit–Wigner–Fano (BWF) line, indicating coupling of phonons to the electronic continuum of metallic SWNTs. It is found that the line width of the BWF line decreases with increasing temperature. This temperature-dependent behavior is contrary to that of the Lorentzian lines, where the line width increases with increasing temperature. The coupling constant 1/q of the BWF line is also found to decrease with increasing temperature. These temperature-dependent behaviors of BWF line provide evidence that it is the bundling effect of SWNTs that greatly enhances the BWF coupling.  相似文献   

20.
A statistical analysis of single-shot spectral data is reported for laser-induced breakdown spectroscopy (LIBS). Fluctuations in both atomic emission and plasma continuum emission are investigated in concert for a homogenous gaseous flow, and fluctuations in plasma temperature are reported based on iron atomic emission in an aerosol-seeded flow. Threshold irradiance for plasma initiation and plasma absorption were investigated for pure gaseous and aerosol streams, with detailed statistical measurements performed as a function of pulse energy in the breakdown regime. The ratio of the analyte atomic emission intensity to the continuum emission intensity (peak/base) provided a robust signal for single-shot LIBS analysis. Moreover, at optimal temporal delay, the precision of the LIBS signal was maximized for pulse energies within the saturation regime with respect to plasma absorption of incident energy. Finally, single-shot temperature measurements were analyzed, leading to the conclusion that spatial variations in the plasma volume formation and subsequent plasma emission collection, play important roles in the overall shot-to-shot precision of the LIBS technique for gaseous and aerosol analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号