首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OH addition reactions play a pivotal role in the atmospheric transformation of a number of phenyl and substituted phenyl‐based persistent and toxic organic pollutants. Here, we screened appropriate DFT functionals to predict reaction mechanisms and rate constants (kOH) of the OH additions by taking benzene and substituted benzenes (C6H5F, C6H5Cl, C6H5Br, C6H5CH3, C6H5OH) as model compounds. By comparing the kOH values calculated with DFT methods to experimental values, we found that the ωB97 functional is the best among the 18 functionals considered (using the basis sets 6‐31 + G(d,p) for optimizations and 6‐311++G(3df,2pd) for single point energy calculations) in the temperature range of 230‐330 K. In addition, we found that some other functionals performed well in specific conditions, e.g., BMKD3 is good for benzene, halogenated benzenes and C6H5CH3, and CAM‐B3LYP is good for the reaction of C6H5OH at room temperature. Based on the diversity of the electronic structures of the selected model compounds and the frequent occurrence of certain substituents ( CH3,  OH,  F,  Cl, and  Br) in the target compounds, the functionals recommended here can be used for future study of the reaction mechanisms and kOH values for OH addition to phenyl and substituted phenyl‐based persistent and toxic organic pollutants.  相似文献   

2.
Charge reversal (+CR) of cations to anions can be used to structurally differentiate isomeric C6H5+ and C6H6 hydrocarbon ions by means of tandem mass spectrometry. In view of the manifold of possible isomers, only a few prototype precursors are examined. Thus, charge inversion demonstrates that electron ionization of 2,4-hexadiyne yields an intact molecular ion, whereas the charge inversion spectra of C6H6 obtained from benzene, 1,5-hexadiyne, and fulvene are identical within experimental error. Similarly, the +CR spectrum of the C6H5+ cation generated by dissociative ionization of 2,4-hexadiyne is significantly different from the +CR spectrum of C6H5+ obtained from iodobenzene, suggesting the formation of a 2,4-hexadiynyl cation from the former precursor. Although charge inversion of cations to anions has a low efficiency and requires large precursor ion fluxes, the particular value of this method is that the spectra may not just differ in fragment ion intensities, but these differences can directly be related to the underlying ion structures.  相似文献   

3.
For two competing decompositions of the same molecular ion to give products [A1+] and [A2+], the ratio [A1+]/[A2+], is equal to the ratio of rate constants for the formation of the stable ions. Thr ratios, [Y C7H4O+]/[C7H5O+], were determined for several benzophenones for electron energies from 15 to 70 eV. Plots of log [Y C7H4O+]/[C7H5O+] vs.[ω+] gave good straight lines at all energies. Similar correlations have been reported for log [Y C7H6+]/[C7H7+] from substituted diphenyl ethanes and are also true for substituted acetophenones, log [YøCO+]/[CH3CO+]. A few charge exchange data were obtained which showed the same general trend as the electron-impact data and emphasize the contribution of low energy ions in the 70 eV mass spectra. Relatively poor correlations were obtained for the [Y C6H4+] and [C6H5+] ions that are formed by both one-step and two-step decompositions.  相似文献   

4.
Mass-analysed ion kinetic energy spectra for collisional activation (CA) of [C6H6]+˙ formed via electron capture by [C6H6]2+ ions in collision with neutral benzene molecules have been compared for the C6H6 isomers benzene, 1,5-hexadiyne and 2,4-hexadiyne. Comparisons of fragment abundance and total CA fragment yields were also made for [C6H6]+˙ ions generated by electron ionization (EI). CA conditions of ion velocity and collision gas pressure were identical in these comparisons. In general the fragment abundance patterns for the ions formed by charge exchange were very similar to those for singly charged benzene ions generated by EI. However, significant variations in CA fragment yield (the ratio of the total CA fragment ion abundance to the abundance of the incident unfragmented ions) were observed. It is not clear from the results whether these variations reflect structurally different ions or ions of different internal energies. The CA spectra of [C6H6]+˙ ions derived from charge exchange reactions between the benzene dication and the target gases He, Ne, Ar, Kr and Xe have also been recorded and, once again, very similar fragment abundance patterns were observed along with large variations in total CA fragment yields. Charge exchange efficiency measurements are reported for reactions between the benzene dication and the targets He, Ne, Ar, Kr, Xe and C6H6 (benzene) and also for the doubly charged ions derived from the linear C6H6 isomers. In the latter case Xe and benzene targets were used. The energetics and efficiency measurements for the former reactions suggest that for targets such as He and Ne the processes probably involve excited states of the doubly charged ions. The efficiencies measured for the latter reactions were distinctly different for the three C6H6 isomers and may indicate a strong dependence of charge exchange cross-section on doubly charged ion structure.  相似文献   

5.
In the study, the X-H (X=CH2, NH, O) bond dissociation energies (BDE) of para-substituted azulene (Y-C10H8X-H) were predicted theoretically for the first time using Density Functronal Theory (DFT) methods at UB3LYP/6-311 + +g(2df,2p)//UB3LYP/6-31 +g(d) level. It was found that the substituents exerted similar effects on the X-H BDE of azulene as those on benzene, except for 6-substituted 2-methylazulene. Owing to the substituent-dipole interaction, the reaction constants (ρ^+) of 2- and 6-Y-CIoHsX-H (X=NH and O only) varied violently. The origin of the substituent effects on the X-H BDE of azulene was found, by both GE/RE and SIE theory, to be directly associated with variation of the radical effects, although the ground effects also played a modest role in determining the net. substituent effects.  相似文献   

6.
This study employed a vacuum ultraviolet synchrotron radiation source and reflectron time-of-flight mass spectrometry (TOF-MS) to investigate the photoionization and dissociation of styrene. By analyzing the photoionization mass spectrum and efficiency curve alongside G3B3 theoretical calculations, we determined the ionization energy of the molecular ion, appearance energy of fragment ions, and relevant dissociation pathways. The major ion peaks observed in the photoionization mass spectra of styrene correspond to C8H8+, C8H7+ and C6H6+. The ionization energy of styrene is measured as 8.46 ± 0.03 eV, whereas the appearance energies of C8H7+ and C6H6+ are found to be 12.42 ± 0.03 and 12.22 ± 0.03 eV, respectively, in agreement with theoretical values. The main channel for the photodissociation of styrene molecular ions is the formation of benzene ions, whereas the dissociation channel that loses hydrogen atoms is the secondary channel. Based on the experimental results and empirical formulas, the required dissociation energies (Ed) of C8H7+, C8H6+ and C6H6+ are calculated to be (3.96 ± 0.06), (4.00 ± 0.06) and (3.76 ± 0.06) eV, respectively. Combined with related thermochemical parameters, the standard enthalpies of formations of C8H8+, C8H7+, C8H6+ and C6H6+ are determined to be 964.2, 1346.3, 1350.2 and 1327.0 kJ/mol, respectively. Based on the theoretical study, the kinetic factors controlling the styrene dissociation reaction process are determined by using the Rice–Ramsperger–Kassel–Marcus (RRKM) theory. This provides a reference for further research on the atmospheric photooxidation reaction mechanism of styrene in atmospheric and interstellar environments.  相似文献   

7.
Photoion-photoion coincidence spectra of benzene and benzene-d6 photoionized by He(II) light and synchrotron radiation show the existence of six major and eight minor charge-separation reactions of the [C6H6]2+ ion. Three main groups of ion pairs are related to [C3H3]+ + [C3H3]+, [C2H3]+ + [C4H3]+ and [CH3]+ + [C5H3]+, with appearance energies of 32.2 ± 0.5 eV, 31.3 ± 0.5 eV and 28.4 ± 0.3 eV. The kinetic energy release is the same for all pairs within a group, irrespective of hydrogen number, but differs from group to group. Results are interpreted in terms of fast, direct charge separation of [C6H6]2+, and subsequent hydrogen loss by the singly charged fragments.  相似文献   

8.
The electron impact ionization efficiency curves for the parent ions and the [C7H7]+ fragment ion formed from monosubstituted alkyl benzenes (R?CH3? n-C3H7) have been studied by applying the inverse convolution technique of Vogt and Pascual to the first derivative ionization efficiency curves of the ions. Ionization and appearance energies measured for the ions at threshold are in good agreement with recently published photoionization values. Structures in the ionization efficiency curves (higher energy processes) are also reported for about 4 e V above threshold. The heats of formation calculated for [C7H7]+ fragment ions obtained from toluene and ethyl benzene at threshold are equal to 864 and 865 kJ mol?1 respectively, and are consistent with the tropylium structure. However, for the [C7H7]+ fragment ion obtained from n-propyl benzene at threshold the calculated heat of formation is equal to 923 kJ mol?1 and probably corresponds to a benzyl structure.  相似文献   

9.
Vacuum ultraviolet (VUV) dissociative photoionization of isoprene in the energy region 8.5–18 eV was investigated with photoionization mass spectroscopy (PIMS) using synchrotron radiation (SR). The ionization energy (IE) of isoprene as well as the appearance energies (AEs) of its fragment ions C5H7+, C5H5+, C4H5+, C3H6+, C3H5+, C3H4+, C3H3+ and C2H3+ were determined with photoionization efficiency (PIE) curves. The dissociation energies of some possible dissociation channels to produce those fragment ions were also determined experimentally. The total energies of C5H8 and its main fragments were calculated using the Gaussian 03 program and the Gaussian‐2 method. The IE of C5H8, the AEs for its fragment ions, and the dissociation energies to produce them were predicted using the high‐accuracy energy model. According to our results, the experimental dissociation energies were in reasonable agreement with the calculated values of the proposed photodissociation channels of C5H8. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
《Chemical physics》1987,115(1):129-142
Laser-induced dissociation of phenetole ions has been carried out. The ions have been prepared in a well-defined excited state by resonance-enhanced two-photon, two-color ionization (R2PI/2C). Appearance energies of 2.431 and 2.82 eV have been determined for the first dissociation pathways leading to C6H6O+ and C5H6+ ionic fragment. The dissociation spectrum as well as detailed dissociation rate constants versus internal energy have been obtained. The dissociation rates are compared with those expected from RRKM theory. A complex reaction scheme has been assumed in order to explain the observed discrepancy.  相似文献   

11.
In this work, photoionization and dissociation of cyclohexene have been studied by means of coupling a reflectron time‐of‐flight mass spectrometer with the tunable vacuum ultraviolet (VUV) synchrotron radiation. The adiabatic ionization energy of cyclohexene as well as the appearance energies of its fragment ions C6H9+, C6H7+, C5H7+, C5H5+, C4H6+, C4H5+, C3H5+ and C3H3+ were derived from the onset of the photoionization efficiency (PIE) curves. The optimized structures for the transition states and intermediates on the ground state potential energy surfaces related to photodissociation of cyclohexene were characterized at the ωB97X‐D/6‐31+g(d,p) level. The coupled cluster method, CCSD(T)/cc‐pVTZ, was employed to calculate the corresponding energies with the zero‐point energy corrections by the ωB97X‐D/6‐31+g(d,p) approach. Combining experimental and theoretical results, possible formation pathways of the fragment ions were proposed and discussed in detail. The retro‐Cope rearrangement was found to play a crucial role in the formation of C4H6+, C4H5+ and C3H5+. Intramolecular hydrogen migrations were observed as dominant processes in most of the fragmentation pathways of cyclohexene. The present research provides a clear picture of the photoionization and dissociation processes of cyclohexene in the 8‐ to 15.5‐eV photon energy region. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Reactions of gold anions and cations generated by laser desorption/ionization were studied in the FTICR spectrometer. Au associated with C6F6 to give the novel Au(C6F6) complex, whose binding energy was estimated to be 24 ± 4 kcal mol−1 from analysis of the radiative association (RA) kinetics. Au+ associated with C6F5H to give Au+(C6F5H), with binding energy estimated to be 31 kcal mol−1. Au+ reacted with C6H6 to form the well known Au+(C6H6) and Au+(C6H6)2 complexes. The observation of rapid charge transfer from Au+(C6H6) to C6H6 was interpreted as showing that benzene binds more strongly to neutral Au than to Au+. The neutral Au–C6H6 bond is accordingly concluded to be stronger than about 70 kcal mol−1.  相似文献   

13.
Using an oxenoid model, we investigated dependences of carcinogenic potency of the benzenes C6H5‐X on a nature of substituents X. According to the model, a P450 enzyme breaks a dioxygen molecule and generates the oxens, which readily react with substrates. We suggest that a stability of the intermediate OC6H6‐X with tetrahedrally coordinated C atom relative to the molecule C6H5‐X determines a rate of substrate biotransformation. Using MO LCAO MNDO approach, we calculated the total energies of molecules C6H6‐X and arene oxides OC6H6‐X. A difference ΔEmin of these values determines activation energy of oxidation reaction. The compounds with the low ΔEmin values are noncarcinogenic. Benzene derivatives with high ΔEmin values belong to carcinogenic compounds series. The carcinogenicity of amino‐ and nitro‐substituted benzenes is also determined by N‐oxidation of amino and reduction of the nitro group. As the phenylhydroxylamines XC6H4NHOH and nitrenium ions XC6OH4NH+ are the common metabolites of the nitro‐ and amino‐substituted benzenes and nitrenium ions XC6H4NH+ are the ultimate carcinogens, we use the differences ΔEN = E(XC6H4NH+) ? E(XC6H4NHOH) as the second parameter characterizing the carcinogenic activity of amino‐ and nitro‐substituted benzenes. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

14.
Cross-sections have been measured for the charge neutrilization if ions from benzene in kiloelectron-volt collisions with benezene target molecules. Measured values range from 65 Å2 for the symmetric [C6H6]+? C6H6 resonant reactions to 8 Å2 for [C3H3]+? C6H6 reactions. Cross-sections computed using a simple resonance charge transfer model compare favourably with experimental data for the symmetric reactions. The cross-sections for asymmetric reactions are smaller that those for they symmetric system and magnitudes of the asymmetric cross-sections are correlated with recombination energies of the respective ions.  相似文献   

15.
The photoionization and photodissociation of 1,4-dioxane have been investigated with a reflectron time-of-flight photoionization mass spectrometry and a tunable vacuum ultraviolet synchrotron radiation in the energy region of 8.0-15.5 eV. Parent ion and fragment ions at m/z 88, 87, 58, 57, 45, 44, 43, 41, 31, 30, 29, 28 and 15 are detected under supersonic conditions. The ionization energy of DX as well as the appearance energies of its fragment ions C4H7O2+, C3H6O+, C3H5O+, C2H5O+, C2H4O+, C2H3O+, C3H5+, CH3O+, C2H6+, C2H5+/CHO+, C2H4+ and CH3+ was determined from their photoionization efficiency curves. The optimized structures for the neutrals, cations, transition states and intermediates related to photodissociation of DX are characterized at the B3LYP/6-31+G(d,p) level and their energies are obtained by G3B3 method. Possible dissociative channels of the DX are proposed based on comparison of experimental AE values and theoretical predicted ones. Intramolecular hydrogen migrations are found to be the dominant processes in most of the fragmentation pathways of 1,4-dioxane.  相似文献   

16.
The rate constants and modes of reaction of NO2+ and C2H5ONO2NO2+ with aromatic compounds and alkanes have been determined in a pulsed ion cyclotron resonance mass spectrometer. Both ions undergo competing charge transfer and substitution reactions (NO2+ + M → MO+ + NO; C2H5ONO2NO2+ + M → MNO2+ + C2H5ONO2) with aromatic molecules. In both cases, the probability that a collision results in charge transfer increases with increasing exothermicity of that process. The C2H5ONO2NO2+ ion does not undergo charge transfer with molecules having an ionization potential greater than about 212 kcal/mol (9.2 eV); this observation leads to an estimate of 13 kcal/mol for the binding energy between NO2+ and C2H5ONO2. The importance of the substitution reaction depends on the number of substituents on the aromatic ring and the molecular structure, and, in the case of C2H5ONO2NO2+ ions, on the energetics of the competing charge transfer process. Both NO2+ and C2H5ONO2NO2+ undergo hydride transfer reactions with alkanes. For both these ions, k(hydride transfer)/k (collision) increases with increasing exothermicity of reaction, but in both cases the rate constants of reaction are unusually low when compared with other hydride transfer reactions of comparable exothermicity which have been reported in the literature. This is interpreted as evidence that the attack on the alkane preferentially involves the nitrogen atom (where the charge is localized) rather than one of the oxygen atoms of NO2+.  相似文献   

17.
The 70 eV electron ionization mass spectra of polycyclic aromatic compounds are characterized by the presence of relatively stable multiply charged molecular ions [M]n+ (n=2–4). When generated from the compounds benzene, napthalene, anthracene, phenanthrene, 2,3-benzanthracene, 1,2-benzanthracene, chrysene, 9,10-benzophenanthrene and pyrene, the relative abundances of the multiply charged ions increase dramatically with the number of rings. These compounds form multiply charged molecular ions (n=2, 3) which undergo unimolecular decompositions indicative of considerable ionic rearrangement. The main charge separation processes observed here [M]2+→m1++m2+, [M]3+˙→m3++m→+m42+) involve, in almost every case, one or more of the products [CH3]+, [C2H3]+˙ and [C3H3]+. This suggests the existence of preferred structures amongst the metastable parent ions. Information on the relative importance of the various fragmentation pathways is presented here along with translational energy release data. Some tentative structural information about the metastable ions has been inferred from the translational energy release on the assumption that the released energy is due primarily to coulombic repulsion within the transition state structure. For the triply charged ions these interpretations have necessitated the use of a coulombic repulsion model which takes account of an extra charge. Vertical ionization energies for the process [M]n++G→[M](n+1)+G+e? (charge stripping) have also been determined where possible for n=1 and 2 and the results from these experiments allow the derivation of simple empirical equations which relate successive ionization energies for the formation of [M]2+ and [M]3+˙ to the appearance energy of [M]+˙.  相似文献   

18.
Dilute mixtures of C6H6 or C6D6 in He provide abundant [C6H6] or [C6D6] ions and small amounts of [C6H7]+ or [C6D7]+ ions as chemical ionization (CI) reagent ions. The C6H6 or C6D6 CI spectra of alkylbenzenes and alkylanilines contain predominantly M ions from reactions of [C6H6] or [C6D6] and small amounts of MH+ or MD+ ions from reactions of [C6H7]+ or [C6D7]+. Benzene CI spectra of aliphatic amines contain M, fragment ions and sample-size-dependent MH+ ions from sample ion-sample molecules reactions. The C6D6 CI spectra of substituted pyridines contain M and MD+ ions in different ratios depending on the substituent (which alters the ionization energy of the substituted pyridine), as well as sample-size-dependent MH+ ions from sample ion-sample molecule reactions. Two mechanisms are observed for the formation of MD+ ions: proton transfer from [C6D6] or charge transfer from [C6D6] to give M, followed by deuteron transfer from C6D6 to M. The mechanisms of reactions were established by ion cyclotron resonance (ICR) experiments. Proton transfer from [C6H6] or [C6D6] is rapid only for compounds for which proton transfer is exothermic and charge transfer is endothermic. For compounds for which both charge transfer and proton transfer are exothermic, charge transfer is the almost exclusive reaction.  相似文献   

19.
Chemical ionization was used to study gas-phase electrophilic addition reactions of chloromethyl ions ([CHxCl3-x]+, x = 0, 1, 2) with a number of substituted benzenes (C6H5Y, Y = NH2, OH, CHO, CN, NO2). Mass-analyzed ion kinetic energy spectrometry was used to characterize the reaction products with respect to the site of electrophilic addition (ring v. substituent). In some cases, examination of secondary reaction products (ion–molecule adduct which has undergone an elimination reaction in the ion source) aided in establishing the original site of electrophilic addition. Aniline, benzonitrile and nitrobenzene exhibited preferential substituent interaction, while phenol and benzaldehyde gave a mixture of ring and substituent reaction products. These gas-phase results differ considerably from solution-phase Friedel–Crafts alkylation; however, they are consistent with the notion of preferential σ-bond formation at polarizable centers of negative charge.  相似文献   

20.
Molecular structures and energies have been calculated, using MINDO/3, of the mass spectral ions arising from benzene: (C6H6)+ (three non-valence isomers); (C6H5+); (C5H3+) (four isomers); (C4H4)+ (three isomers); (C4H3)+ (two isomers); (C4H2)+ (four isomers); (C3H3)+; and (C2H2)+. Calculations have been made for the conjugate neutral fragments, allowing calculation of appearance potentials, and also for the ion (C6H7)+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号