首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To replace costly and time-consuming experimentation in laboratory, a novel solubility prediction model based on chaos theory, self-adaptive particle swarm optimization (PSO), fuzzy c-means clustering method, and radial ba- sis function artificial neural network (RBF ANN) is proposed to predict CO2 solubility in polymers, hereafter called CSPSO-FC RBF ANN. The premature convergence problem is overcome by modifying the conventional PSO using chaos theory and self-adaptive inertia weight factor. Fuzzy c-means clustering method is used to tune the hidden centers and radial basis function spreads. The modified PSO algorithm is employed to optimize the RBF ANN connection weights. Then, the proposed CSPSO-FC RBF ANN is used to investigate solubility of CO2 in polystyrene (PS), polypropylene (PP), poly(butylene succinate) (PBS) and poly(butylene succinate-co-adipate) (PBSA), respec- tively. Results indicate that CSPSO-FC RBF ANN is an effective method for gas solubility in polymers. In addition, compared with conventional RBF ANN and PSO ANN, CSPSO-FC RBF ANN shows better performance. The values of average relative deviation (ARD), squared correlation coefficient (R2) and standard deviation (SD) are 0.1071, 0.9973 and 0.0108, respectively. Statistical data demonstrate that CSPSO-FC RBF ANN has excellent prediction capability and high-accuracy, and the correlation between prediction values and experimental data is good.  相似文献   

2.
《印度化学会志》2023,100(2):100921
The hollow fiber air gap membrane distillation (AGMD) has recently attracted tremendous attention for desalination and wastewater treatment due to its high packing density, low conductive heat loss, and latent heat recovery capability. Utilizing fast and accurate modeling tools to predict MD performance can result in the further development of desalination technologies. However, simple and time-saving prediction models to assess the AGMD performance were not abundant. Herein, AGMD performance, including permeate flux (J) and gained output ratio (GOR) was predicted through multiple linear regression (MLR) model, back propagation neural network (BP ANN) and radial basis function neural network (RBF ANN) under different hot temperatures (Th), coolant temperatures (Tc), feed flow rates (F), and feed concentration (c). A total of 30 sets of data were used to train the proposed models, the other 10 external validation datasets not used for training the models were applied to validate the prediction accuracy. The results depicted that RBF ANN (SPREAD = 30, N = 30) showed greatest prediction performance (R2 = 0.99–1) compared with BP ANN and MLR models (R2 = 0.98–0.99; R2 = 0.89–0.97). The computing time consumption of RBF ANN was higher than BP ANN. According to the Mean impact value (MIV) analysis, Th had the strongest effect on J and GOR. Increasing Th and decreasing c both had positive impacts on J and GOR, but increasing Tc or F resulted in a trade-off influence. A genetic algorithm (GA) was employed to optimize J and GOR simultaneously, the optimum J and GOR could reach 6.00 kg/m2·h and 7.70 respectively. In this study, the three prediction models proved their abilities to predict AGMD performance and further provide guidance in the actual membrane distillation water treatment process.  相似文献   

3.
4.
There is a growing attention to the bio and renewable energies due to fast depletion of fossil fuels as well as the global warming problem. Here, we developed a modeling and simulation method by means of artificial intelligence (AI) for prediction of the bioenergy production from vegetable bean oil. AI methods are well known for prediction of complex and nonlinear process. Three distinct Adaptive Boosted models including Huber regression, LASSO, and Support Vector Regression (SVR) as well as artificial neural network (ANN) were applied in this study to predict actual yield of Fatty acid methyl esters (FAME) production. All boosted utilizing the Adaptive boosting algorithm. The important influencing parameters on the biodiesel production such as the catalyst loading (CAO/Ag, wt%) and methanol to oil (Soybean oil) molar ratio were selected as the input variables of models while the yield of FAME production was selected as output. Model hyper-parameters were tuned to maintain generality while improving prediction accuracy. The models were evaluated using three distinct metrics Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R2. Error rates of 8.16780E-01, 4.43895E-01, 2.06692E + 00, and 3.92713 E-01 were obtained with the MAE metric for boosted Huber, SVR, LASSO and ANN models. On the other hand, the RMSE error of these models were about 1.092E-02, 1.015E-02, 2.669E-02, and 1.01174E-02, respectively. Finally, the R-square score were calculated for boosted Huber, boosted SVR, and boosted LASSO as 0.976, 0.990, 0.872, and 0.99702, respectively. Therefore, it can be concluded that although the boosted SVR and ANN models were better models for prediction of process efficiency in terms of error, but all algorithms had high accuracy. The optimum yield of 83.77% and 81.60% for biodiesel production were observed at optimum operating values from boosted SVR and ANN models, respectively.  相似文献   

5.
Andrographolide, the principal secondary metabolite of Andrographis paniculata, displays a wide spectrum of medicinal activities. The content of andrographolide varies significantly in the species collected from different geographical regions. Therefore, this study aims at investigating the role of different abiotic factors and selecting suitable sites for the cultivation of A. paniculata with high andrographolide content using a multilayer perceptron artificial neural network (MLP-ANN) approach. A total of 150 accessions of A. paniculata collected from different regions of Odisha and West Bengal in eastern India showed a variation in andrographolide content in the range of 0.28–5.45% on a dry weight basis. The MLP-ANN was trained using climatic factors and soil nutrients as the input layer and the andrographolide content as the output layer. The best topological ANN architecture, consisting of 14 input neurons, 12 hidden neurons, and 1 output neuron, could predict the andrographolide content with 90% accuracy. The developed ANN model showed good predictive performance with a correlation coefficient (R2) of 0.9716 and a root-mean-square error (RMSE) of 0.18. The global sensitivity analysis revealed nitrogen followed by phosphorus and potassium as the predominant input variables influencing the andrographolide content. The andrographolide content could be increased from 3.38% to 4.90% by optimizing these sensitive factors. The result showed that the ANN approach is reliable for the prediction of suitable sites for the optimum andrographolide yield in A. paniculata.  相似文献   

6.
7.
8.
《中国化学会会志》2018,65(5):567-577
Calpeptin analogs show anticancer properties with inhibition of calpain. In this work, we applied a quantitative structure–activity relationship (QSAR) model on 34 calpeptin derivatives to select the most appropriate compound. QSAR was employed to generate the models and predict the more significant compounds through a series of calpeptin derivatives. The HyperChem, Gaussian 09, and Dragon software programs were used for geometry optimization of the molecules. The 2D and 3D molecular structures were drawn by ChemDraw (Ultra 16.0) and Chem3D (Pro16.0) software. The Unscrambler program was used for the analysis of data. Multiple linear regression (MLR‐MLR), partial least‐squares (MLR‐PLS1), principal component regression (MLR‐PCR), a genetic algorithm‐artificial neural networks (GA‐ANN), and a novel similarity analysis‐artificial neural network (SA‐ANN) method were used to create QSAR models. Among the three MLR models, MLR‐MLR provided better statistical parameters. The R2 and RMSE of the prediction were estimated as 0.8248 and 0.26, respectively. Nevertheless, the constructed model using GA‐ANN revealed the best statistical parameters among the studied methods (R2 test = 0.9643, RMSE test = 0.0155, R2 train = 0.9644, RMSE train = 0.0139). The GA‐ANN model is found to be the most favorable method among the statistical methods and can be employed for designing new calpeptin analogs as potent calpain inhibitors in cancer treatment.  相似文献   

9.
10.
11.
12.
13.
14.
15.
A quantitative structure–mobility relationship (QSMR) is proposed to estimate the electrophoretic mobility of diverse sets of analyses in capillary zone electrophoresis using Abraham solvation parameters of analyses, such as the excess molar refraction, polarizability, hydrogen bond acidity, basicity, and molar volume. QSMR was developed for prediction the electrophoretic mobility of 231 organic acids using the solvation parameters calculated by Abraham. Multiple linear regression (MLR) as a linear model and artificial neural network (ANN) methods were used to evaluate the nonlinear behavior of the involved parameters. The prediction results are obtained by nonlinear model, ANN, seem to be superior over MLR and were in good agreement with experimental data. In the proposed ANN–QSMR model, the overall mean percentage deviation values were 5.6, 5.4, and 5.3% and the coefficients of determinations (R2) were 0.84, 0.84, and 0.84 for training, test, and verification set, respectively. To investigate the robustness of the model, cross-validation methods have been established, i.e., leave-one-out and leave-N-out (N?=?5 and 10) and model is showed good predictive ability against data variation in cross-validation process. This model is not only able to accurately predict the migration order of a diverse set of organic acids but also model finds that solvation parameters are responsible in separation mechanism.  相似文献   

16.
The purpose of this study is to predict the thermal conductivity of copper oxide (CuO) nanofluid by using feed forward backpropagation artificial neural network (FFBP-ANN). Thermal conductivity of CuO nanofluid is measured experimentally using transient hot-wire technique in temperature range of 20–60 °C and in volume fractions of 0.00125, 0.0025, 0.005 and 0.01% for neural network training and modeling. In addition, in order to evaluate accuracy of modeling in predicting the coefficient of nanofluid thermal conductivity, indices of root-mean-square error, coefficient of determination (R 2) and mean absolute percentage error have been used. FFBP-ANN with two input parameters (volume fraction and nanofluid temperature) and one output parameter (nanofluid thermal conductivity) in addition to two hidden layers and one outer layer which purelin, logsig and tansig functions are used was considered as the most optimum structure for modeling with neuron number of 4–10–1. In this study, among common methods of theoretical modeling of nanofluid thermal conductivity, theoretical method of Maxwell and also multivariate linear regression model was used for explaining the importance of modeling and predicting the results using neural network. According to this research, the results of indices and predictions show high accuracy and certainty of ANN modeling in comparison with empirical results and theoretical models.  相似文献   

17.
Results of lipase production by a soil microorganism, expressed in terms of lipolytic activities of the culture were modeled and optimized using artificial neural network (ANN) and genetic algorithm (GA) techniques, respectively. ANN model, developed based on back propagation algorithm, were highly accurate in predicting the system with coefficient of determination (R 2) value being close to 0.99. Optimization using GA, based on the ANN model developed, resulted in the following values of the media constituents: 9.991 ml/l oil, 0.100 g/l MgSO4 and 0.009 g/l FeSO4. And a maximum value of 7.69 U/ml of lipolytic activity at 72 h of culture was obtained using the ANN-GA method, which was found to be 8.8% higher than the maximum values predicted by a statistical regression-based optimization technique-response surface methodology.  相似文献   

18.
Nucleophilicity and electrophilicity dictate the reactivity of polar organic reactions. In the past decades, Mayr et al. established a quantitative scale for nucleophilicity (N) and electrophilicity (E), which proved to be a useful tool for the rationalization of chemical reactivity. In this study, a holistic prediction model was developed through a machine-learning approach. rSPOC, an ensemble molecular representation with structural, physicochemical and solvent features, was developed for this purpose. With 1115 nucleophiles, 285 electrophiles, and 22 solvents, the dataset is currently the largest one for reactivity prediction. The rSPOC model trained with the Extra Trees algorithm showed high accuracy in predicting Mayr's N and E parameters with R2 of 0.92 and 0.93, MAE of 1.45 and 1.45, respectively. Furthermore, the practical applications of the model, for instance, nucleophilicity prediction of NADH, NADPH and a series of enamines showed potential in predicting molecules with unknown reactivity within seconds. An online prediction platform (http://isyn.luoszgroup.com/) was constructed based on the current model, which is available free to the scientific community.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号