首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Electrochemical and spectroelectrochemical analyses of 4‐(4‐(5‐phenyl‐1,3,4‐oxadiazole‐2‐yl)phenoxy)‐substituted metal‐free phthalocyanine ( H2Pc ( 1 )) and metallated phthalocyanines ( PbPc ( 2 ) and CoPc ( 3 )) were performed in solution. Voltammetric characterizations of the phthalocyanine complexes were investigated by using cyclic voltammetry and square wave voltammetry techniques. CoPc ( 3 ) gave common metal and ring based electron transfer reactions; however they split due to the aggregation. Although PbPc ( 2 ) illustrated reversible reduction processes during the voltammetric measurements, it was de‐metallized and thus turned to the metal free phthalocyanine during repetitive voltammetric cycles and in situ spectroelectrochemical measurements.  相似文献   

2.
In this study, electrochemical behaviors of Co(II) and Pd(II) phthalocyanines carrying tetrakisdiethoxymalonyl and Pd(II) phthalocyanine carrying tetrakiscarboxymethyl substituents at the peripheral positions are investigated by cyclic voltammetry and applied potential chronocoulometry techniques. Cyclic voltammetric studies show that, while Pd(II) phthalocyanines carrying diethoxymalonyl and carboxymethyl substituents give up to three common phthalocyanine ring reductions, Co(II) phthalocyanine carrying diethoxymalonyl substituents gives a metal-centered oxidation and a metal-centered reduction and three ligand-centered reduction and a ligand-centered oxidation processes. First reduction processes of both the PdPc complexes have shoulders. This different voltammetric behaviors of Pd(II) phthalocyanines carrying carboxymethyl and diethoxymalonyl substituents results from interaction of this distinctive substituents with the phthalocyanine ring π electron system and interaction with the different solvent systems. Observation of the splitting of the first reduction process of Pd(II) phthalocyanines carrying diethoxymalonyl and carboxymethyl substituents suggests the aggregation of the complex. Very small diffusion coefficient of the complexes with respect to Co(II) phthalocyanine also confirms the existence of the aggregation of the complex during the electrochemical studies. Effects of the substituents and the solvent media are clearly observed from the differences of the voltammograms of Pd(II) phthalocyanines carrying diethoxymalonyl and carboxymethyl substituents in DMSO and THF solvent media, respectively. Published in Russian in Elektrokhimiya, 2006, Vol. 42, No. 1, pp. 36–43. The text was submitted by the authors in English.  相似文献   

3.
The synthesis of novel tetra‐substituted manganese and indium phthalocyanines was achieved by cyclotetramerization of corresponding phthalonitrile derivative. The new compounds have been characterized by using UV‐vis, IR, 1H NMR and mass spectroscopic data. Spectroelectrochemical characterization of an indium phthalocyanine complex was performed for the first time in this paper and its electrochemical and spectroelectrochemical responses were compared with manganese phthalocyanine, bearing a redox active metal center. Electrochemical and spectroelectrochemical measurements exhibit that incorporation of redox active metal ion, MnIII, instead of InIII into the phthalocyanine core extends the redox capabilities of the complex including the metal‐based reduction couples of the metal center and affect the aggregation behavior of the complexes. Presence of molecular oxygen in the electrolyte system affects the voltammetric and spectroelectrochemical responses of the phthalocyanines due to the interaction between the complexes and molecular oxygen. MnPc and InPc formed µ‐oxo species and this reaction changed the electrochemical and optic responses of the complexes, which are desired properties for sensor and electrocatalytic applications of a material. An in situ electrocolorimetric method has been applied to investigate the color of the electro‐generated anionic and cationic forms of the complexes for possible electrochromatic applications and for clarify the interaction mechanism of the MnPc with molecular oxygen.  相似文献   

4.
The synthesis and characterization of metal-free (H2-Pc) and metal-containing (Zn, Co, and Cu) derivatives of a symmetrically octa-substituted phthalocyanine derived from 4,5-bis[2-(phenylthio)ethoxy]phthalonitrile were carried out by microwave irradiation. The electrochemical properties of the metal-free phthalocyanine 4 and metallophthalocyanine complexes 5 and 6 were investigated by cyclic voltammetry and differential pulse voltammetry. We have previously investigated the electrochemical properties of the tetra substituted 2-(phenylthio)ethoxy phthalocyanines. The reduction potential of the octa-substituted metal-free phthalocyanine shifted to more negative potential as a result of the electron donating of the 2-(phenylthio)ethoxy groups on the periphery compared to those of tetra substituted. The H2Pc and ZnPc demonstrated ligand-based electron transfer processes, while CoPc complex has a metal-based reduction process. Similar aggregation behavior was observed for octa-substituted phthalocyanines. The compounds were characterized using IR, 1H NMR, 13C NMR, elemental analysis, and MS spectral data.  相似文献   

5.
Novel Ni(II), Zn(II), Co(II) and Cu(II) phthalocyanines with four peripheral 4-[methyleneoxy(18-crown-6)] groups have been synthesized via the cyclic tetramerization of 4-[{(18-crown-6)-yl}methyleneoxy]phthalonitrile and the corresponding metal salts (NiCl2, Zn(CH3COO)2, CoCl2 and CuCl2). The thermal stabilities of the metal-free and metallophthalocyanine compounds were determined by thermogravimetric analysis. The structures of the target compounds were confirmed using elemental analysis, IR, 1H-NMR, 13C-NMR, UV–Vis and MS spectral data. Voltammetric and in situ spectroelectrochemical measurements show that while the cobalt phthalocyanine complex gives both metal-based and ring-based redox processes, the metal-free, nickel, zinc and copper phthalocyanines show only ring-based reduction and oxidation processes. An in situ electrocolorimetric method has been applied to investigate the color of the electro-generated anionic and cationic forms of the complexes.  相似文献   

6.
The synthesis of novel metal-free and metallophthalocyanines [Ni(II), Zn(II), Co(II), Cu(II)] were prepared by cyclotetramerization of a novel 4-{2-[2-(1-naphthyloxy)ethoxy]ethoxy}phthalonitrile and the corresponding metal salts (NiCl2, Zn(CH3COO)2, CoCl2 and CuCl2). The structures of the target compounds were confirmed using elemental analysis, IR, 1H NMR, 13C NMR, UV–Vis and MS spectral data. Voltammetric and in situ spectroelectrochemical measurements show that while cobalt phthalocyanine complex gives both metal-based and ring-based redox processes, metal-free, and zinc phthalocyanines show only ring-based reduction and oxidation processes. All complexes decomposed and coated on the electrode as nonconductive film at positive potential window of the electrolyte. An in situ electrocolorimetric method has been applied to investigate color of the electro-generated anionic and cationic forms of the complexes.  相似文献   

7.
The chemical synthesis and characterization with spectroscopic and electrochemical properties of [bis(4-fluorophenyl)-methoxy]-substituted metallo-phthalocyanines were reported for the first time. The new phthalocyanines have been characterized by elemental analysis, UV-Vis, FT-IR, and mass spectroscopies. The aggregation behavior of the phthalocyanine compounds was investigated in different solvents and concentrations. It is found that the fluoro substituents of peripherally Co and Cu complexes are examined and induce a shift to the redox processes toward the negative potentials and formed more reversible processes. Metal-based reduction and oxidation reactions were obtained for the Co(II) complex, whereas Cu(II) complexes exhibited Pc-ring-based electron-transfer reactions. The voltammetric measurements supported the proposed structure of the complexes.  相似文献   

8.
Phthalocyanines with four biphenyl-malonic ester groups on the periphery were synthesized by cyclotetramerization of 4-(1,1-dicarbethoxy-2-(4-biphenyl)-ethyl)-phthalonitrile. The new compounds were characterized by elemental analyses, FT-IR, 1H NMR, 13C NMR, UV–Vis, and MASS spectral data. Electrochemical behaviors of novel Co(II), Cu(II), and Pd(II) phthalocyanines were investigated by cyclic voltammetry, potential differential pulse voltammetry, and applied potential chronocoulometry techniques. While Cu(II) and Pd(II) phthalocyanines give up to four common phthalocyanine ring reductions, Co(II) phthalocyanine gave two ligand-centered and two metal-centered redox processes. HOMO–LUMO gap of the complexes are comparable with the reported MPc papers.  相似文献   

9.
Metal free (2), manganese (3), and cobalt (4) phthalocyanines, which are octa-substituted at the peripheral positions with [4-(thiophen-3-yl)-phenoxy] moieties, were synthesized and electrochemical properties were reported for the first time. The complexes were characterized by elemental analysis, IR, 1H NMR, mass spectroscopy, and electronic spectroscopies. Electrochemical and spectroelectrochemical measurements exhibit that incorporation of the redox active metal ions, CoII and MnIIIOAc, into the phthalocyanine core extends the redox richness of the Pc ring with the reversible metal-based reduction and oxidation couples in addition to the common Pc ring-based electron transfer processes. Presence of molecular oxygen in the electrolyte system causes to form π-oxo MnPc complexes, which alter the voltammetric and spectroelectrochemical responses of the complex. An in situ electrocolorimetric method has been applied to investigate the color of the electro-generated anionic and cationic forms of the complexes for possible electrochromatic applications.  相似文献   

10.
Li R  Zhang X  Zhu P  Ng DK  Kobayashi N  Jiang J 《Inorganic chemistry》2006,45(5):2327-2334
The effect of substituents on the electrochemistry of metal-free phthalocyanines was examined for 17 phthalocyanine compounds. This work also provides new information about the electron-donating or -withdrawing nature of various substituents, namely, alkoxy, alkylthio, alkyl, alkynyl, phenyloxy, and phenylthio groups attached to the phthalocyanine system, from the viewpoint of electrochemistry. Most of the effects of peripheral and nonperipheral substitution and changes in the ring (pi-conjugated system) size on the electrochemistry of metal-free phthalocyanines can be reasonably explained by considering the energy levels of frontier molecular orbitals of the corresponding compounds, which were obtained by calculations using the semiempirical PM3 method.  相似文献   

11.
The focus of the present work is to gain more insight into the electrochemical behavior of newly synthesized CoII, ZnII, CuII, and PdII phthalocyanines with tetra-tricarbethoxyethyl substituents at the peripheral position. A more exhaustive electrochemical study of the complexes was done to determine the desired wisdom for the usage of the complexes as a functional material. A comparative study of the voltammetric measurements of these complexes showed that while ZnII, CuII, and PdII phthalocyanines exhibited up to four common phthalocyanine ring reductions, CoII phthalocyanine gave a metal-centered oxidation, a reduction and a ligand-centered reduction process. By contrast observation of the splitting of the second reduction process of PdII phthalocyanine suggests aggregation of the complex. Diffusion coefficients of all complexes were determined by both the cyclic voltammetry and the potential step chronocoulometry techniques. Diffusion coefficients of the reduced and oxidized forms of the redox couples of the complexes were also calculated by the potential step chronocoulometry technique. Diffusion coefficients of the reduced forms of the electrode products of the complexes were found to be slightly higher than that of the oxidized forms.  相似文献   

12.
Metal free (6), cobalt(II) (7), copper(II) (8) and manganese(III) (9) phthalocyanines, which are tetra substituted at the peripheral positions with 2-[2-(1,1′:3′,1′′-terphenyl-2′-yloxy)ethoxy]ethoxy groups, were synthesized and characterized by IR, 1H-NMR,13C-NMR, UV–Vis and mass spectroscopy. Electrochemistry of the phthalocyanines were studied with voltammetric measurements by using cyclic voltammetry and square wave voltammetry techniques in DCM/TBAP electrolyte on a Pt working electrode. Electrochemical measurements exhibit that incorporation of redox active metal ions, CoII and MnIII, into the phthalocyanine core extends the redox capabilities of the Pc ring including the metal-based reduction couples of the metal. While MnIIIClPc showed only metal based reduction reactions, CoIIPc showed metal based and ligand based reduction reactions as expected. Cyclic and square wave voltammetric studies showed that phthalocyanines have reversible/quasireversible/irreversible redox processes, which are the main requirement for the technological usage of these compounds.  相似文献   

13.
The synthesis and characterization of new peripherally and non-peripherally tetra-substituted metal-free and zinc(II) phthalocyanines with 2-, 3- and 4-phenyloxyacetic acid functionalities are described for the first time in this study. The new compounds have been characterized by elemental analysis, FT-IR, UV-Vis, MALDI-TOF and 1H-NMR spectra. Photodegradation, singlet oxygen and fluorescence quantum yields, and fluorescence lifetimes of these compounds are studied in dimethylformamide (DMF). The influence of the substituent position on the phthalocyanine framework (non-peripherally or peripherally), central metal ion (metal-free or zinc) and the position of the COOH group (2-, 3- or 4-position on the phenyloxyacetic acid) on the spectroscopic, photophysical and photochemical properties have been investigated. Non-peripherally zinc(II) phthalocyanines (1b and 2b) and peripherally zinc(II) phthalocyanine (4b) gave good singlet oxygen quantum yields (ΦΔ) (0.37, 0.39 and 0.38, respectively) which indicate the potential of the complexes as photosensitizers in applications of PDT.  相似文献   

14.
In this work, a phthalonitrile derivative bearing p-sulfonylphenoxy group at the 3-position has been synthesised. The water-soluble non-peripherally tetrasubstituted zinc (3) and cobalt (4) phthalocyanines were obtained by cyclotetramerisation of this phthalonitrile derivative in the presence of anhydrous metal salts by microwave irradiation. The compounds have been characterised by using FT-IR, 1H NMR, UV–Vis and Mass spectrometry (MS) data. The aggregation behaviours of these compounds were investigated in methanol, DMSO, DMF, and water. We have also studied the aggregation behaviours of the phthalocyanine complex 3 in various DMSO/water mixtures. Additionally, the redox properties of the phthalocyanine complexes were examined in dimethylsulfoxide by voltammetry and in situ spectroelectrochemistry. Redox behaviours of the complexes supported the structures of the complexes. Metal and ring-based reductions were observed for 4 and only ring-based electron transfer processes were observed with 3.  相似文献   

15.
Novel water soluble free-base, Zn(II) and Co(II) metallo phthalocyanines with four cinnamic acid moieties were prepared from the corresponding tetrakis(7-coumarinthio-4-methyl)-phthalocyanine by the lactone ring opening reaction. The new compounds were purified and characterized by elemental analysis, 1H NMR, Maldi-TOF, FT-IR and UV–Vis spectral data. Cyclic and differential pulse voltammetry and in situ spectroelectrochemistry of the 2,9,16,23-tetrakis(7-coumarinthio-4-methyl) substituted free-base 1a, Zn(II) 1b and Co(II) 1c phthalocyanines, employed as the starting compounds have been studied. This allowed us not only to identify metal- and phthalocyanine ring-based redox processes of the complexes, but also the effect of aggregation on these processes.  相似文献   

16.
By using of peripherally tetrakis-2,6-dimethoxyphenoxy substituted Co(II), Fe(III), and Mn(III) phthalocyanines was observed to extend the redox richness of the phthalocyanine ring with the addition of reversible metal-based electron transfer couples to the phthalocyanine ring-based electron transfer processes in solution. The emergence of highly steady anionic and cationic redox species with clear spectral and colour changes both in solution and in the film during in situ spectroelectrochemical and in situ electrocolorimetric measurements pointed out their applicability as electrochromic materials. Furthermore, the phthalocyanine complexes demonstrated strong interaction with dioxygen and thus, high electrocatalytic enforcement for its reduction.  相似文献   

17.
We report, in this study, peripherally 3- and 4-substituted functionalized ionophore ligands (13) and their α- and β-tetra polyalcohol substituted lead(II) phthalocyanines M{Pc[S–CH(C3H7)(C2H5OH)]4} (7, 9 and 11) and M{Pc[S–C6H12(OH)]4} (8, 10 and 12) which are a mixture of different isomers. The complexes have been fully characterized by elemental analysis, FT-IR, 1H NMR, 13C NMR, MS (MALDI-TOF) and UV–Vis spectral data. These complexes induced H-type (face-to-face fashion) or J-aggregate (edge-to-edge) dimers when titrated with AgNO3 or Na2PdCl4 in a THF–MeOH solution. Cyclic and square wave voltammetry studies showed that the complexes gave three one-electron ligand-based reductions and two one-electron oxidation couples having diffusion controlled mass transfer character. Assignments of these redox couples were confirmed by spectroelectrochemical measurements. The observation of split Q bands, which are characteristic spectral behavior of metal-free phthalocyanines, indicates demetallization of the complexes during the spectroelectrochemical measurement under the applied potentials. The types of the substituents on the ring of the phthalocyanines affect the demetallization process of the complexes.  相似文献   

18.
4-[2-(Phenylthio)ethoxy]phthalonitrile 3 was synthesized by nucleophilic displacement of nitro group in 4-nitrophthalonitrile with 2-(phenylthio)ethanol 1. The metal-free phthalocyanine 4 was prepared by the reaction of a dinitrile monomer with 2-(dimethylamino)ethanol. Ni(II), Co(II), Cu(I) phthalocyanines 5, 7, 8 were prepared by reaction of the dinitrile compound with the chlorides of Ni(II), Co(II), Cu(I) in DMAE. Zn(II) phthalocyanine 6, was prepared by reaction of the dinitrile compound with the acetates of Zn(II) in DMAE. Electrochemical behaviours of novel metal-free, Co(II) and Zn(II) phthalocyanines were investigated by cyclic voltammetry, potential differential pulse voltammetry techniques. The new compounds were characterized by a combination of IR, 1H NMR, 13C NMR, UV–Vis, elemental analysis and MS spectral data.  相似文献   

19.
Our efforts toward the development of the synthesis of a novel type of receptor ligand and its tetrasubstituted phthalocyanines, 2,9,16,23-tetrakis(6-hydroxyhexylsulfanyl) phthalocyanine, M[Pc(S–C6H13OH)4] (M = Zn(II), Cu(II), Co(II)), bearing sulfur and oxygen donor atoms on the periphery together with hexyl moieties, have been carried out together with spectroscopic and electrochemical characterization. The newly synthesized functional phthalocyanines were soluble in MeOH, EtOH, THF, DMF, CNP (α-chloronapthalene), DMSO and quinoline, and less soluble in i-PrOH and CH3CN. Cation binding abilities of the functional phthalocyanines with Ag+, Pd2+, Hg2+ and Cd2+, resulting in the formation of polynuclear phthalocyanine complexes, were evaluated by UV–Vis spectroscopic techniques. The spectroscopic properties of the complexes were affected strongly by the electron-donating sulfanyl units on the periphery. The cyclic voltammetry of the complexes were examined on a platinum electrode in DMSO. The new synthesized compounds have been characterized by elemental analysis, FTIR, 1H and 13C NMR, MS (ESI and MALDI-TOF) and UV–Vis spectral data.  相似文献   

20.
Group-IV-A phthalocyanines with four crown ether substituents have been prepared from 4′,5′-dicyanobenzo(15-crown-5), 4′,5′-diiminoisoindolino(15-crown-5), or metal-free phthalocyanine and the corresponding metal salts. The axial ligands of dichloro[tetra(15-crown-5)phthalocyaninato]silicon or -tin have been converted into dihydroxy derivatives by hydrolysis in aqueous Et3N. The catalytic effect of H2O-free CaC12 in quinoline is used for the polycondensation of dihydroxysilicon-phthalocyanine to cofacially arrayed polymers. The thermal stability of group-IV-A-metal phthalocyanines is confirmed by the higher initial decomposition points (290–440°) compared to those of the corresponding transition-metal phthalocyanines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号