首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The high conformational flexibility of peptoids can generate problems in biomolecular selectivity as a result of undesired off-target interactions. This drawback can be counterbalanced by restricting the original flexibility to a certain extent, thus leading to new peptidomimetics. By starting from the structure of an active peptoid as an apoptosis inhibitor, we designed two families of peptidomimetics that bear either 7-substituted perhydro-1,4-diazepine-2,5-dione 2 or 3-substituted 1,4-piperazine-2,5-dione 3 moieties. We report an efficient, solid-phase-based synthesis for both peptidomimetic families 2 and 3 from a common intermediate. An NMR spectroscopic study of 2a,b and 3a,b showed two species in solution in different solvents that interconvert slowly on the NMR timescale. The cis/trans isomerization around the exocyclic tertiary amide bond is responsible for this conformational behavior. The cis isomers are more favored in nonpolar environments, and this preference is higher for the six-membered-ring derivative 3a,b. We propose that the hydrogen-bonding pattern could play an important role in the cis/trans equilibrium process. These hydrogen bonds were characterized in solution, in the solid state (i.e., by using X-ray studies), and by molecular modeling of simplified systems. A comparative study of a model peptoid 10 containing the isolated tertiary amide bond under study outlined the importance of the heterocyclic moiety for the prevalence of the cis configuration in 2a and 3a. The kinetics of the cis/trans interconversion in 2a, 3a, and 10 was also studied by variable-temperature NMR spectroscopic analysis. The full line-shape analysis of the NMR spectra of 10 revealed negligible entropic contribution to the energetic barrier in this conformational process. A theoretical analysis of 10 supported the results observed by NMR spectroscopic analysis. Overall, these results are relevant for the study of the peptidomimetic/biological-target interactions.  相似文献   

2.
Massive efforts in molecular library synthesis have strived for the development of synthesis methodology which systematically delivers natural product‐like compounds of high spatial complexity. Herein, we present a conceptually simple approach that builds on the power of solid‐phase peptide synthesis to assemble precursor peptides (oligomers) designed to undergo oxidative cascade reactions. By harnessing the structural side‐chain diversity and inherent stereochemical features offered by readily available amino acids (monomers), a proof‐of‐concept collection of 54 skeletally and stereochemically diverse compounds was generated, and selected compounds were elaborated into isoform‐selective metalloprotease inhibitors.  相似文献   

3.
Molecular scaffolds have been shown to facilitate and stabilise secondary structural turn elements, with a central core‐arranging functionality in a defined three‐dimensional orientation. In a peptide‐based molecular imaging probe, this approach is of particular value as it would essentially “hide” a metal radioisotope within the ligand framework, making the labelling element a critical component of the receptor‐bound structure. Starting from a 1,2‐diaminoethane loaded 2‐chlorotrityl resin, a versatile set of triamine ligand systems were synthesised by using solid‐phase Fmoc‐based peptide chemistry. The resultant resin‐bound peptides then underwent amide reduction by treatment with borane‐THF at 65 °C. This provided complete conversion to the corresponding polyamine entities in high purity for the majority of the amino acids utilised. The triamines were then coordinated on solid support by using [NEt4]2[Re(CO)3(Br)3] followed by resin cleavage and HPLC purification, to give the desired rhenium coordinated species. We have shown that amino acid sequences can be assembled, reduced and coordinated on‐resin, resulting in a versatile set of metal–ligand constructs. These studies could be expanded to generate libraries of turn‐based peptidomimetics containing Re/TcI organometallic scaffolds, with the intention of developing an improved approach for finding new diagnostic and therapeutic radiopharmaceutical entities.  相似文献   

4.
5.
Solid-phase oligosaccharide synthesis is based on a hydroxymethylbenzyl benzoate spacer linker which is connected to the Merrifield resin (1 P). Glycosylation was performed with O-glycosyl trichloroacetimidates of glucosamine, mannose, and galactose permitting chain extension (2e, 5e), branching (4b, 7b, 8b), and chain termination (3t, 6t, 9t) with the use of O-benzyl, O-benzoyl, and N-dimethylmaleoyl as permanent and O-fluorenylmethoxycarbonyl (Fmoc) and O-phenoxyacetyl (PA) as temporary protecting groups. The steps required on solid phase are i) glycosylation under TMSOTf catalysis, ii) selective cleavage of the temporary protecting groups, Fmoc with NEt3 and PA with 0.5 equivalents of NaOMe in CH2Cl2/MeOH, and iii) product cleavage from the resin with 4.0 equivalents of NaOMe in CH2Cl2/MeOH and following O-acetylation for convenient product isolation. Thus a highly successful synthesis of a small library of seventeen N-glycan structures was made possible comprising the N-glycan pentasaccharide core structure 53 and two further chain extended hexa- and heptasaccharide N-glycans with a glucosamine or a lactosamine residue, respectively, which is attached to one of the mannose residues of the core structure (56 and 59).  相似文献   

6.
7.
Libraries of "unsymmetrical" tweezer receptors, featuring a guanidinium head group as a carboxylate binding site and two independently synthesized peptidic arms, have been prepared and screened to identify receptors for the N-Ac-Lys-D-Ala-D-Ala tripeptide sequence. The binding properties of one such receptor structure, with dye-labeled N-Ac-Lys-D-Ala-D-Ala, were investigated. These studies demonstrated that when attached to the solid-phase, the receptor binds dye-labeled N-Ac-Lys-D-Ala-D-Ala, in buffered aqueous media, with mM binding affinity.  相似文献   

8.
9.
10.
A library of 91 heterocyclic compounds composed of 16 distinct scaffolds has been synthesized through a sequence of phosphine-catalyzed ring-forming reactions, Tebbe reactions, Diels-Alder reactions, and, in some cases, hydrolysis. This effort in diversity-oriented synthesis produced a collection of compounds that exhibited high levels of structural variation both in terms of stereochemistry and the range of scaffolds represented. A simple but powerful sequence of reactions thus led to a high-diversity library of relatively modest size with which to explore biologically relevant regions of chemical space. From this library, several molecules were identified that inhibit the migration and invasion of breast cancer cells and may serve as leads for the development of antimetastatic agents.  相似文献   

11.
Dicatechol ligands were prepared with caprylic acid (6-H(4)) or the naturally occurring RGD (23-H(4)) or WKY sequences (32-H(4)) as spacers. 6-H(4) was prepared by solution-phase amide coupling chemistry, while 16, the precursor of 23-H(4), was obtained by solution-phase and solid-phase preparation. In the latter case, a polystyrene resin with a hydrazine benzoate linker was used as the solid support. The last coupling step was performed simultaneously with cleavage of the peptide from the resin. The protecting groups of 16 were all removed in one step to yield the free ligand 23-H(4). The WKY-bridged derivative 32-H(4) was obtained by a similar solid-phase synthesis followed by deprotection. The reaction of all three ligands with dioxomolybdenum(VI) bis(acetylacetonate) afforded 19-membered metallamacrocycles in which the short peptides are conformationally fixed in a turn-type structure. Hereby, the side-chain functionalities of the peptides do not interfere in the metal complexation.  相似文献   

12.
13.
A novel strategy for an unconventional Pictet–Spengler reaction has been developed for the regioselective cyclization of the imidazole ring system at the C2 position. The developed strategy was utilized to develop a diversity‐oriented parallel synthesis for bis(heterocyclic) skeletal novel analogs of benzimidazole‐linked imidazoquinoxalines on a soluble polymer support under microwave conditions. Condensation of polymer‐immobilized o‐phenylenediamines with 4‐fluoro‐3‐nitrobenzoic acid followed by nucleophilic aromatic substitution with an imidazole motif affords bis(heterocyclic) skeletal precursors for the Pictet–Spengler reaction. The unconventional Pictet–Spengler cyclization with various aldehydes was achieved regioselectively at the C2 position of the imidazole ring to furnish rare imidazole‐fused quinoxaline skeletons. During the Pictet–Spengler cyclization, aldehydes bearing electron‐donating groups afford 4,5‐dihydro‐imidazoquinoxalines, which then auto‐aromatize into benzimidazole‐linked imidazo[1,2‐a]quinoxalines. However, interestingly, aldehydes bearing electron‐withdrawing groups directly provide aromatized imidazo[1,2‐a]quinoxalines, which unexpectedly afford novel benzimidazole‐linked 4‐methoxy‐4,5‐dihydro‐imidazo[1,2‐a]quinoxalines after polymer cleavage.  相似文献   

14.
15.
A rapid and efficient total synthesis is reported for the cyclic lipodepsipeptide pseudodesmin A. This member of the Pseudomonas viscosin group is active against Gram‐positive bacteria and features self‐assembling properties. A conserved serine residue within the lactone macrocycle is exploited for initial immobilization on 2‐chlorotrityl chloride resin through ether formation with the side‐chain alcohol. Subsequent elongation proceeds through Fmoc solid‐phase peptide synthesis, including automated incorporation of the enantioselectively synthesized (R)‐3‐hydroxydecanoic acid lipid tail. Following esterification to generate the incipient lactone bond, the macrocycle is formed by on‐resin head‐to‐tail macrolactamization and cleaved from the resin to give the desired compound in good purity. The short and efficient synthesis route allows rapid generation of analogues by facile variation of both the peptide and lipid moieties with good control of epimerization while maximizing automation. Synthesis of the pseudodesmin A enantiomer yields identical self‐assembly and biological activity to that observed for the natural compound, showing that activity is not mediated by chiral interactions. A D ‐Asn8 analogue developed en route retains self‐assembly, but loses activity. The synthesis strategy should be generally applicable for the rapid generation of analogues from various cyclic lipodepsipeptide groups, allowing an investigation of their self‐assembling properties and structure–activity relationships.  相似文献   

16.
17.
General synthetic methods for the grafting of peptide chains onto polyoxometalate clusters by the use of general activated precursors have been developed. Using a solution‐phase approach, pre‐synthesized peptides can be grafted to a metal oxide cluster to produce hybrids of unprecedented scale (up to 30 residues). An adapted solid‐phase method allows the incorporation of these clusters, which may be regarded as novel hybrid unnatural amino acids, during the peptide synthesis itself. These methods may open the way for the automated synthesis of peptides and perhaps even proteins that contain “inorganic” amino acids.  相似文献   

18.
This article describes the design and optimization of a simple three-component aza[4+2]/allylboration reaction to access polysubstituted alpha-hydroxyalkyl piperidines in a highly diastereocontrolled fashion from maleimides, 4-boronohydrazonodienes, and aldehydes. The aldehyde component does not interfere with the first aza[4+2] step, and it was found that this tandem reaction provides better yields of piperidine products 5 when carried out in one-pot. The required 4-borono-hydrazonodienes 1 are synthesized efficiently from the condensation of 3-boronoacrolein pinacol ester (4) with hydrazines. Overall, the three-component process using N-substituted maleimides as dienophiles produces four stereogenic centers and is quite general. It tolerates the use of a wide variety of aldehydes and hydrazine precursors with different electronic and steric characteristics. By allowing such a wide substrate scope and up to four elements of diversity, this reaction process is particularly well adapted towards applications in diversity-oriented synthesis of polysubstituted piperidine derivatives. The suitability of the aza[4+2]/allylboration reaction for use in solid-phase chemistry was also demonstrated using a N-arylmaleidobenzoic acid functionalized resin. This novel multicomponent reaction thus offers a high level of stereocontrol and versatility in the preparation of densely functionalized nitrogen heterocycles.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号