首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
探讨酚酞啉对HRP(辣根过氧化酶)–Luminol–H2O2化学发光体系的增强作用。将酚酞啉加入辣根过氧化酶(HRP)–Luminol–H2O2化学发光体系,发光强度显著增强,发光持续时间达30 min以上。HRP–Luminol–H2O2化学发光体系的HRP质量浓度在5~800 pg/m L范围内与相对发光强度呈良好的线性关系,线性回归方程为lg I=1.07lgc+0.98,线性相关系数r=0.96,检出限为1.25 pg/m L。测定结果的相对标准偏差为2.8%~5.1%(n=10),加标回收率为93.5%~96.2%。酚酞啉可用于HRP及其相关标记物的定量分析。  相似文献   

2.
The endohedral fullerene Y3N@C80 exhibits luminescence with reasonable quantum yield and extraordinary long lifetime. By variable‐temperature steady‐state and time‐resolved luminescence spectroscopy, it is demonstrated that above 60 K the Y3N@C80 exhibits thermally activated delayed fluorescence with maximum emission at 120 K and a negligible prompt fluorescence. Below 60 K, a phosphorescence with a lifetime of 192±1 ms is observed. Spin distribution and dynamics in the triplet excited state is investigated with X‐ and W‐band EPR and ENDOR spectroscopies and DFT computations. Finally, electroluminescence of the Y3N@C80/PFO film is demonstrated opening the possibility for red‐emitting fullerene‐based organic light‐emitting diodes (OLEDs).  相似文献   

3.
The occurrence of 17α-ethinylestradiol (EE2) in the environment and its removal have drawn special attention from the scientific community in recent years, due to its hazardous effects on human and wildlife around the world. Therefore, the aim of this study was to produce an efficient enzymatic system for the removal of EE2 from aqueous solutions. For the first time, commercial silica nanopowder and 3D fibrous chitinous scaffolds from Aplysina fistularis marine sponge were used as supports for horseradish peroxidase (HRP) immobilization. The effect of several process parameters onto the removal mechanism of EE2 by enzymatic conversion and adsorption of EE2 were investigated here, including system type, pH, temperature and concentrations of H2O2 and EE2. It was possible to fully remove EE2 from aqueous solutions using system SiO2(HRP)–chitin(HRP) over a wide investigated pH range (5–9) and temperature ranges (4–45 °C). Moreover, the most suitable process conditions have been determined at pH 7, temperature 25 °C and H2O2 and EE2 concentrations equaling 2 mM and 1 mg/L, respectively. As determined, it was possible to reuse the nanoSiO2(HRP)–chitin(HRP) system to obtain even 55% EE2 degradation efficiency after five consecutive catalytic cycles.  相似文献   

4.
A promising strategy of thermally activated delayed fluorescence (TADF) sensitized circularly polarized luminescence (CPL) has been proposed for improving the electroluminescence efficiencies of circularly polarized fluorescent emitters. Compared with chiral TADF emitters which suffer from the dilemma of small ΔEST accompanied by small kr, the TADF-sensitized CPL (TSCP) strategy using TADF molecules as sensitizers and CP-FL molecules as emitters might be the most promising method to construct high-performance circularly polarized organic light-emitting diodes (CP-OLEDs). Consequently, by taking advantage of the theoretically 100 % exciton utilization of TADF sensitizers, especially, by designing CP-FL emitters with high PLQY, narrow FWHM and large glum values, TSCP-type CP-OLEDs with excellent overall performances can be realized.  相似文献   

5.
Luminescent exciplexes based on a chiral electron donor and achiral acceptors are reported as a new approach to design circularly polarized (CP) and thermally activated delayed fluorescence (TADF) emitters. This strategy results in rather high CP luminescence (CPL) values with glum up to 7×10−3, one order of magnitude higher in comparison to the CPL signal recorded for the chiral donor alone (glum ∼7×10−4). This increase occurs concomitantly with a CPL sign inversion, as a result of the strong charge-transfer emission character, as experimentally and theoretically rationalized by using a covalent chiral donor-acceptor model. Interestingly, blue, green-yellow and red chiral luminescent exciplexes can be obtained by modifying with the electron accepting character of the achiral unit while keeping the same chiral donor unit. These results bring new (inter)molecular guidelines to obtain simply and efficiently multi-color CP-TADF emitters.  相似文献   

6.
酶联放大镧系螯合物发光法──辣根过氧化物酶(HRP)-铽-对羟基苯甲酸体系的研究及用于HRP和结核抗体的分析谢剑炜,鄢远,彭学军,许金钩,陈国珍(厦门大学化学系、现代分析化学研究所,厦门,361005)关键词酶联放大镧系螯合物发光法,辣根过氧化物酶,...  相似文献   

7.
《中国化学会会志》2018,65(9):1127-1135
In this paper, a WS2 nanosheet was modified on the surface of a carbon ionic liquid electrode (CILE), and horseradish peroxidase (HRP) was further fixed on the electrode with a Nafion film. Direct electrochemistry and bioelectrocatalysis of HRP incorporated on the modified electrode were investigated in detail. On Nafion/HRP/WS2/CILE, a pair of well‐defined quasi‐reversible redox peaks appeared on the cyclic voltammogram, indicating that the presence of the WS2 nanosheet on the electrode surface could provide a specific interface with large surface area for HRP and its direct electron transfer rate was greatly enhanced. The formal potential (E0) obtained was –0.179 V, which was the typical feature of heme Fe(III)/Fe(II) in HRP. The electron transfer coefficient (α) and the heterogeneous electron transfer rate constant (ks) of HRP were calculated as 0.44 and 1.01 s–1, respectively. This HRP‐modified electrode showed excellent electrocatalytic activity for the reduction of trichloroacetic acid and NaNO2 with a wide linear range and low detection limit. Real samples were detected by this proposed method, indicating the successful fabrication of a new third‐generation electrochemical enzyme sensor utilizing the WS2 nanosheet.  相似文献   

8.
Studies of the kinetic behavior of horseradish peroxidase (HRP) at pH 8 and at room temperature indicate that the reaction of phenol with H2O2 catalyzed by HRP exhibits normal Michaelis-Menten saturation kinetics. An irreversible reaction mechanism for the steady-state kinetics of HRP, which is consistent with the experimental data, is considered. The second-order rate constants for the reactions of HRP with H2O2 and compound II with phenol are 4.14 × 105 M-1s-1 and 5.54 × 104M-1s-1, respectively.  相似文献   

9.
The photoluminescence (PL) of barite is a noncharacteristic property and cannot be used for the investigation of its structure. After thermal treatment of barite at 600°C several luminescent centers were observed, providing information about different impurities. UO 2 2+ was determined from the vibrational structure and the long decay time of the luminescence band. Two different types of uranyl were detected, thin films of uranyl mineral (most probably, reserfordin) and a solid solution of uranyl ion in barite crystal. Characteristic green luminescence of UO 2 2+ may be used as indicative feature for the prospecting of uranium deposits and for the sorting of barite ores with the aim of cleaning from harmful U impurities. Eu2+ was determined from the spectral position, the half-width and the characteristic decay time of the luminescence band. Mn2+ and Ag+ were determined by comparing luminescence bands spectral parameters to those of synthesized BaSO4−Mn and BaSO4−Ag. Fe3+ or Mn4+ were determined from the spectral-kinetic parameters of the luminescence bands. Dedicated to Professor Lisa Heller-Kallai on the occasion of her 65th birthday  相似文献   

10.
Horseradish peroxidase (HRP) was immobilized into a new type of sol–gel-derived nano-sized tin oxide/gelatin composite film (SnO2 composite film) using a sol–gel film/enzyme/sol–gel film “sandwich” configuration. Direct electrochemistry and electrocatalysis of HRP incorporated into the composite films were investigated. HRP/SnO2 composite film exhibited a pair of stable and quasi-reversible cyclic voltammetric peaks for the HRP Fe(III)/HRP Fe(II) redox couple with a formal potential of about −0.25 V (vs. SCE) in a pH 6.0 phosphate buffer solution. The electron transfer between the enzyme and the underlying electrode was greatly enhanced in the microenvironment with nano-SnO2 particles and nanoporous structures. Morphologies and microstructures of the composite films and HRP/composite films were characterized with TEM, AFM. Electrochemical impedance spectroscopy (EIS) was also used to feature the HRP incorporated into composite films. FTIR and UV–Vis spectroscopy demonstrated that HRP in the composite film could retain its native secondary structure. With the advantages of organic–inorganic hybrid materials, the HRP/SnO2 composite film modified electrode displayed good stability and electrocatalytic activity to the reduction of H2O2, The apparent Michaelis-Menten constant was estimated to be 0.345 mM, indicating a high affinity of HRP entrapped into the composite film toward H2O2.  相似文献   

11.
A novel, simple and relative highly sensitive amperometric flow biosensor for cyanide was developed by using horseradish peroxidase (HRP)‐adsorbed carbon‐felt (CF), based on an inhibitory effect on the HRP‐catalyzed O2 reduction. The HRP‐CF showed a sufficient bioelecrocatalytic activity for O2 reduction in the potential region from 0 to ?0.5 V at pH 5.0, due to a direct electron transfer‐based O2 reduction process via ferrous‐HRP and compound III. This HRP‐catalyzed O2 reduction was reversibly inhibited by cyanide, which enabled to fabricate a novel and simple reagentless (i.e., no requirement of the ordinary substrate, H2O2, and the electron transfer mediators) flow‐biosensor for cyanide. When air‐saturated 0.1 M phosphate buffer (pH 5.0) was used as a carrier under the applied potential of ?0.2 V vs. Ag/AgCl, the steady‐state base‐current due to the HRP‐catalyzed O2 reduction was reversibly inhibited by the cyanide injection (200 µL), resulting in peak‐shape current responses. The magnitude of the inhibition peak currents linearly increased with increasing concentrations of cyanide up to 1 µM, and the detection limit was found to be 0.04 µM (S/N=2). The apparent inhibition constant Ki′ was estimated to be 0.87 µM.  相似文献   

12.
本文以戊二醛交联的辣根过氧化物酶(HRP)为模板合成了均匀分散的无定形硒纳米粒子(粒径10~20 nm),以所得合成产物为载体构建了HRP生物传感器。研究结果表明,无定形硒纳米粒子具有良好的生物相容性和吸附性,所得传感器灵敏度高,对测定底物的生物亲和性好。  相似文献   

13.
稀土铽离子对辣根过氧化物酶活力指数的影响(英)   总被引:1,自引:0,他引:1  
0IntroductionHorseradishperoxidase(HRP)isaplanthemeenzymecatalyzingoxidationofawidevarietyofaro鄄maticmoleculesbyhydrogenperoxideanditisthemostwidelystudiedmemberoftheperoxidasefamily[1~3].ThecrystalstructureofHRPhasbeensolved[2].ThestructuralfeaturesofHR…  相似文献   

14.
Protein electrochemistry affords a direct method to study the biological electron transfer processes. However, supplying a biocompatible environment to maintain the native state of protein is all‐important and challengeable. Here, we chose vaterite, one of the crystalline polymorphs of calcium carbonate, with highly porous nature and large specific surface area, which was doped with phospholipids, as the matrix to immobilize horseradish peroxidase (HRP). The integrity of HRP was kept during the simple immobilization procedure. By virtue of this organic/inorganic complex matrix, the direct electrochemistry of HRP was realized, and the activity of HRP for catalyzing reduction of O2 and H2O2 was preserved.  相似文献   

15.
Immunoassay is one of the biochemical analytical techniques using the specific antigen antibody com-plexation for analytical purposes. It has extensive ap-plication in clinical diagnostics, prevention and cure of diseases, and virus diagnostics. The presentation and progress of immunoassay methodology are one of the greatest achievements of bioanalytical chemistry. It is estimated that several-hundred millions of immuno-analytical determinations are carried out every year all over the world. E…  相似文献   

16.
An alkynyl‐protected gold nanocluster, Au22(tBuC≡C)18 ( 1 ), has been synthesized and its structure has been determined by single‐crystal X‐ray diffraction. The molecular structure consists of a Au13 cuboctahedron kernel and three [Au3(tBuC≡C)4] trimeric staples. The cluster 1 has strong luminescence in the solid state with a 15 % quantum yield, and it displays interesting thermochromic luminescence as revealed by temperature‐dependent emission spectra. The enhanced room‐temperature emission is characterized as thermally activated delayed fluorescence.  相似文献   

17.
The o-aminophenol (OAP)-H_2O_2-horseradish peroxidase (HRP) voltammetric enzyme-linked immunoassay new system has extremely high sensitivity. HRP can be measured with a detection limit of 6.0×10~-(10) g/L and a linear range of 1.0×10~(-9)—4.0×10~(-6) g/L. The pure product of H_2O_2 oxidizing OAP catalyzed by HRP was prepared with chemical method. The enzyme-catalyzed reaction has been investigated with electroanalytical chemistry, UV/Vis spectrum, IR spectrum, ~(13)C NMR, ~1H NMR, mass spectrum, elemental analysis, etc. Under the selected enzyme-catalyzed reaction conditions, the oxidation product of OAP with H_2_O2 catalyzed by HRP is 2-aminophe-noxazine-3-one. The processes of the enzyme-catalyzed reaction and the electroreduction of the product of the enzymecatalyzed reaction have been described.  相似文献   

18.
A novel and ultrasensitive sandwich-type electrochemical aptasensor has been developed for the detection of thrombin, based on dual signal-amplification using HRP and apoferritin. Core/shell Fe3O4/Au magnetic nanoparticles (AuMNPs) loading aptamer1 (Apt1) was used as recognition elements, and apoferritin dually labeled with Aptamer2 (Apt2) and HRP was used as a detection probe. Sandwich-type complex, Apt1/thrombin/Apt2–apoferritin NPs–HRP was formed by the affinity reactions between AuMNPs–Apt1, thrombin, and Apt2–apoferritin–HRP. The complex was anchored on a screen-printed carbon electrode (SPCE). Differential pulse voltammetry (DPV) was used to monitor the electrode response. The proposed aptasensor yielded a linear current response to thrombin concentrations over a broad range of 0.5–100 pM with a detection limit of 0.07 pM (S/N = 3). The detection signal was amplified by using apoferritin and HRP. This nanoparticle-based aptasensor offers a new method for rapid, sensitive, selective, and inexpensive quantification of thrombin, and offers a promising potential in protein detection and disease diagnosis.  相似文献   

19.
effect of horseradish peroxidase (HRP) and H2O2 concentrations on the removal efficiency of phenol, defined as the percentage of phenol removed from solution as a function of time, has been investigated. When phenol and H2O2 react with an approximately one-to-one stoichiometry, the phenol is almost completely precipitated within 10 min. The reaction is inhibited at higher concentrations of H2O2. The removal efficiency increases with an increase in the concentration of HRP, but an increase in the time of treatment cannot be used to offset the reduction in removal efficiency at low concentrations of the enzyme, because of inactivation of the enzyme. One molecule of HRP is needed to remove approximately 1100 molecules of phenol when the reaction is conducted at pH 8.0 and at ambient temperature.  相似文献   

20.
A hydrophilic polyacrylonitrile (PAN) flat sheet membrane was aminated (8.5 μmol of NH2/mg of dry support) for covalent binding of horseradish peroxidase (HRP), mediated by the soluble carbodiimide 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). Silica microbeads derivatized by silanization, to yield an aminated support, and commercial aminated glass microbeads were also coupled to HRP with EDC or activated with glutaraldehyde. The immobilized enzyme activities were determined in a batch enzyme reactor with an external loop, the highest specific immobilized HRP activity being obtained on the glass support (55.8U/mg of protein). Continuous operational stability studies showed that hydrophilic PAN membrane led to the highest retention of HRP activity after an overall period of 35 h, with a normalized productivity of 59.5 μmol of H2O2 reduced/(h·Uimmob HRP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号