首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A research of some colloids has been carried out by means of dynamic light scattering, electrooptical and magnetooptical techniques. Intensity autocorrelation functions of scattered light have been compared to the relaxation curves of electrooptical effect for colloid particles of different shapes. The results of complex research confirm that the complicated character of light scattering by particles allows us to use the methods of birefringence and dichroism only formally when studying most colloid systems. Very thin nano-disperse structures are an exception to this rule. The investigation of polydispersity of some colloids was carried out by magnetooptical and two electrooptical techniques. Size distribution functions resulted from the different techniques agree. This justifies the suppositions about particle light scattering that are required for the use of the methods.  相似文献   

2.
Aminodextran containing submicron magnetic latex particles were prepared in two steps: (a) transformation of oil-in-water magnetic emulsion into structured magnetic latex particles via combination of seed and miniemulsion-like polymerization process and (b) immobilization (adsorption and chemical grafting) of prepared aminodextran onto negatively charged seed magnetic latex particles. The elaborated magnetic latex particles were characterized in terms of particle size, size distribution, morphology, surface charge density, chemical composition, magnetic properties, and also colloidal stability. The results showed that the morphology of the prepared seed magnetic latex is core–shell like and the cationic latex particles are hydrophilic and of high colloidal stability, irrespective of the aminodextran immobilization process.  相似文献   

3.
Topochemical processes accompanying the preparation of supported cobalt catalysts for Fischer-Tropsch synthesis are systematized. The influence of different factors on the size distribution of Co particles during catalyst preparation is considered. Using a magnetic method, it is possible to estimate the average particle size of the supported metal and to obtain a particle size distribution function. Approaches allowing one to control the type of size distribution function for the Co particles are described using Co/SiO2 catalysts as an example.  相似文献   

4.
We report on the use of magnetic sedimentation as a means to determine the size distribution of dispersed magnetic particles. The particles investigated here are (i) single anionic and cationic nanoparticles of diameter D approximately 7 nm and (ii) nanoparticle clusters resulting from electrostatic complexation with polyelectrolytes and polyelectrolyte-neutral copolymers. A theoretical expression of the sedimentation concentration profiles at the steady state is proposed, and it is found to accurately describe the experimental data. When compared to dynamic light scattering, vibrating sample magnetometry, and cryogenic transmission electron microscopy, magnetic sedimentation exhibits a unique property: it provides the core size and core size distribution of nanoparticle aggregates.  相似文献   

5.
研究了快淬NdFeB永磁粉颗粒及其分布对聚合物粘结NdFeB永磁材料性能的影响。快淬Nd-FeB永磁粉颗凿大小及其分布显著地影响聚合物结NdFeB永磁材料的磁性能。适当尺寸的快淬NdFeB磁粉组合可获得高的结NdFeB永磁帝主要是由于快淬NdFeB磁粉硬度高,呈鳞片状,其尺雨越大越难获得高密度,但尺寸太小又将破坏磁粉的结构,导致磁性能恶化。  相似文献   

6.
Micrometer magnetic hybrid particles are of great interest in biomedical field, and various morphologies have been prepared via encapsulation processes. Regarding submicron, only few processes have been investigated and the most recent one leading to highly magnetic submicron magnetic hybrid particles is based on oil in water magnetic emulsion (MES) transformation. The encapsulation of magnetic iron oxide nanoparticles forming oil in water MES was investigated using different styrene/cross‐linker divinylbenzene volume ratio in the presence of potassium persulfate initiator. The encapsulation performed in this work is basically conducted by using well‐defined oil in water MES as a seed in radical emulsion polymerization. The chemical composition, morphology, iron oxide content, magnetic properties, electrokinetic properties, particle size, and size distribution of the prepared magnetic hybrid particles were examined using various techniques. The desired perfect magnetic core and polymer shell morphology were successfully obtained, and the final magnetic hybrid particles are superparamagnetic in nature and exhibit high iron oxide content (64 wt %). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Magnetic particles are of great interest in various biomedical applications, such as, sample preparation, in vitro biomedical diagnosis, and therapy. For biosensing applications, the used functional magnetic particles should answer numerous criteria such as; submicron size in order to avoid rapid sedimentation, high magnetic content for fast separations under applied magnetic field, and finally, good colloidal stability. Therefore, the aim of this work was to prepare submicron magnetic core and conducting polymer shell particles. The polymer shell was induced using p‐phenylenediamine as key monomer. The obtained core–shell particles were characterized in terms of particle size, size distribution, magnetization properties, Fourier transform infrared (FTIR) analysis, surface morphology, chemical composition, cyclic voltammetry, and impedance spectroscopy. The best experimental condition was found using 40 mg of povidone (PVP—stabilizing agent) and 0.16 mmol of p‐phenylenediamine. Using such initial composition, the core‐shell magnetic nanoparticles shown a narrowed size distribution around 290 nm and high magnetic content (above 50%). The obtained amino containing submicron highly magnetic particles were found to be a conducting material and superparamagnetic in nature. These promising conducting magnetic particles can be used for both transport and lab‐on‐a‐chip detection.  相似文献   

8.
Here we report on the synthesis of ultrasmall gamma-Fe2O3 nanoparticles (5 nm) presenting a very narrow particle size distribution and an exceptionally high saturation magnetization. The synthesis has been carried out by decomposition of an iron organometallic precursor in an organic medium. The particles were subsequently stabilized in an aqueous solution at physiological pH, and the colloidal dispersions have been thoroughly characterized by complementary techniques. Particular attention has been given to the assessment of the mean particle size by transmission electron microscopy, X-ray diffraction, dynamic light scattering, magnetic, and relaxometric measurements. The good agreement found between the different techniques points to a very narrow particle size distribution. Regarding the magnetic properties, the particles are superparamagnetic at room temperature and present an unusually high saturation magnetization value. In addition, we describe the potential of these particles as specific positive contrast agents for magnetic resonance molecular imaging.  相似文献   

9.
A velocity and absorption coefficient of sound for magnetic fluid (MF) based on water are studied in the frequency range of 12–132 MHz as a function of the concentration of dispersed phase, the uniform magnetic field, the storage time, and the temperature. The MF dispersed phase consist of magnetite Fe3O4 particles stabilized with sodium oleate. The parameters of sound propagation are measured within temperature interval 0–80°C. Densities of MF and sodium oleate are also measured as a function of temperature. Volume concentrations of magnetic fluid components (water, magnetite, and sodium oleate adsorbed on the surface of magnetic particles) are determined. Densities, heat capacities, coefficients of heat conductivity and thermal expansion of aggregates are estimated. Aggregate size distribution in the studied magnetic fluid is described by the log-normal function. Parameters characterizing the aggregate size distribution are determined and their interpretation is given.  相似文献   

10.
We have investigated the aggregation phenomena in a polydisperse colloidal dispersion composed of ferromagnetic particles by means of the cluster-moving Monte Carlo method. The results have been compared with those for a monodisperse system. The internal structures of aggregates have been analyzed in terms of the radial distribution function in order to clarify the quantitative differences in the internal structures of clusters. In addition, the cluster size distribution and angular distribution function have been investigated. The results obtained in the present study are summarized as follows. In a monodisperse system, open necklacelike clusters are formed and they extend with increasing strength of the magnetic particle-particle interaction. In a polydisperse system with a small standard deviation in the particle size distribution, sigma=0.2, larger necklacelike clusters are formed and some looplike clusters can also be observed. In a polydisperse system with a larger standard deviation, sigma=0.35, clumplike clusters are formed for a weak magnetic particle-particle interaction. For a stronger magnetic interaction, larger size clusters that exhibit a complicated network structure are formed. These complicated cluster formations found in a polydisperse system are mainly due to the effect of the presence of larger particles.  相似文献   

11.
An improved sedimentation method for analyzing particle size distribution is described. The method is primarily distinguished by the application of a magnetic fluid as a medium in which particles move. This circumstance makes it possible to measure particle velocities and sizes with magnetic sensors. The theory of the method and experimental data are discussed.  相似文献   

12.
The magnetic properties of cobalt ferrite-silica nanocomposites with different concentrations (15, 30, and 50 wt %) and sizes (7, 16, and 28 nm) of ferrite particles have been studied by static magnetization measurements and Mossbauer spectroscopy. The results indicate a superparamagnetic behavior of the nanoparticles, with weak interactions slightly increasing with the cobalt ferrite content and with the particle size. From high-field Mossbauer spectra at low temperatures, the cationic distribution and the degree of spin canting have been estimated and both parameters are only slightly dependent on the particle size. The magnetic anisotropy constant increases with decreasing particle size, but in contrast to many other systems, the cobalt ferrite nanoparticles are found to have an anisotropy constant that is smaller than the bulk value. This can be explained by the distribution of the cations. The weak dependence of spin canting degree on particle size indicates that the spin canting is not simply a surface phenomenon but also occurs in the interiors of the particles.  相似文献   

13.
Main mechanisms of absorption and dispersion of sound velocity in microinhomogeneous media are considered. Existing formulas for the velocity and absorption of sound in dispersion media is generalized to the case of continuos dispersed phase particle size distribution. The obtained relations were used for the analysis of the acoustic spectra of dodecane-based magnetic fluid measured in the 12–2000 MHz frequency range at temperatures varied from 0 to 80°C. The distribution of the volume fraction over particle sites in the examined magnetic fluid was described by a lognormal function. Parameters characterizing particle size distribution were determined. The analysis of the results of processing of the acoustic spectra of magnetic fluid indicated that the main contribution to the additional absorption (compared to absorption in the dispersion medium) originates from the friction and heat exchange between the particles and dispersion liquid. Absorption of sound due to scattering by the particles was negligibly small.  相似文献   

14.
Magnetic poly(divinyl benzene)/Fe(3)O(4) microspheres with a narrow size distribution were produced by entrapping the iron pentacarbonyl precursor within the pores of uniform porous poly(divinyl benzene) microspheres prepared in our laboratory, followed by the decomposition in a sealed cell of the entrapped Fe(CO)(5) particles at 300 °C under an inert atmosphere. Magnetic onionlike fullerene microspheres with a narrow size distribution were produced by annealing the obtained PDVB/Fe(3)O(4) particles at 500, 600, 800, and 1100 °C, respectively, under an inert atmosphere. The formation of carbon graphitic layers at low temperatures such as 500 °C is unique and probably obtained because of the presence of the magnetic iron nanoparticles. The annealing temperature allowed control of the composition, size, size distribution, crystallinity, porosity, and magnetic properties of the produced magnetic microspheres.  相似文献   

15.
Magnetic hybrid colloidal particles can be characterized using various techniques and numerous tools leading generally to particles size, size distribution, and electrokinetic properties. However, the chemical composition of these hybrid particles can be estimated using thermal gravimetric analysis (TGA). More interestingly, the combination of this quantitative technique with the magnetization measurement leads not only to chemical composition but also to the overall polymerization conversion and more precisely to the polymerization conversion on the seed particles. In fact, the TGA performed on dried magnetic particles leads to exact organic/inorganic chemical composition. Regarding the magnetization, the amount of magnetic material can be deduced, and consequently, the amount of non‐magnetic material can be also estimated. Thus, TGA and magnetization measurements are considered as complementary techniques for characterization of magnetic hybrid colloidal particles. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The magnetic properties of cobalt ferrite nanoparticles dispersed in a silica matrix in samples with different concentrations (5 and 10 wt% CoFe2O 4) and same particle size (3 nm) were studied by magnetization, DC and AC susceptibility, and Mossbauer spectroscopy measurements. The results indicate that the particles are very weakly interacting. The magnetic properties (saturation magnetization, anisotropy constant, and spin-canting) are discussed in relation to the cation distribution.  相似文献   

17.
18.
Iron and titanium oxide nanoparticles have been synthesized in parallel mesopores of alumina by a novel organometallic "chimie douce" approach that uses bis(toluene)iron(0) (1) and bis(toluene)titanium(0) (2) as precursors. These complexes are molecular sources of iron and titanium in a zerovalent atomic state. In the case of 1, core shell iron/iron oxide particles with a strong magnetic coupling between both components, as revealed by magnetic measurements, are formed. M?ssbauer data reveal superparamagnetic particle behavior with a distinct particle size distribution that confirms the magnetic measurements. The dependence of the M?ssbauer spectra on temperature and particle size is explained by the influence of superparamagnetic relaxation effects. The coexistence of a paramagnetic doublet and a magnetically split component in the spectra is further explained by a distribution in particle size. From M?ssbauer parameters the oxide phase can be identified as low-crystallinity ferrihydrite oxide. In agreement with quantum size effects observed in UV-visible studies, TEM measurements determine the size of the particles in the range 5-8 nm. The particles are mainly arranged alongside the pore walls of the alumina template. TiO2 nanoparticles are formed by depositing 2 in mesoporous alumina template. This produces metallic Ti, which is subsequently oxidized to TiO2 (anatase) within the alumina pores. UV-visible studies show a strong quantum confinement effect for these particles. From UV-visible investigations the particle size is determined to be around 2 nm. XPS analysis of the iron- and titania- embedded nanoparticles reveal the presence of Fe2O3 and TiO2 according to experimental binding energies and the experimental line shapes. Ti4+ and Fe3+ are the only oxidation states of the particles which can be determined by this technique. Hydrogen reduction of the iron/iron-oxide nanoparticles at 500 degrees C under flowing H2/N2 produces a catalyst, which is active towards formation of carbon nanotubes by a CVD process. Depending on the reaction conditions, the formation of smaller carbon nanotubes inside the interior of larger carbon nanotubes within the alumina pores can be achieved. This behavior can be understood by means of selectively turning on and off the iron catalyst by adjusting the flow rate of the gaseous carbon precursor in the CVD process.  相似文献   

19.
Materials producing strain in a magnetic field are known as magnetoelastic or magnetostrictive materials. A new type of material that is able to produce giant strain in a nonhomogeneous magnetic field has been developed. In these magnetic-field-sensitive gels (ferrogels) fine colloidal particles having superparamagnetic behavior are incorporated into a highly swollen elastic polymer network. Magnetic properties of ferrogels have been investigated using electron microscopy, static magnetization measurements, and M?ssbauer spectroscopy. Analysis of the data yielded information on the superparamagnetic behavior of ferrogels and made it possible to estimate the size distribution of the magnetic cores of magnetite particles made by chemical precipitation and built into a chemically cross-linked polyvinyl alcohol matrix. The results are interpreted on the basis of a core-shell model. Copyright 2000 Academic Press.  相似文献   

20.
The use of magnetic latex particles as solid support in biomedical applications is favourable when homogeneous and well-defined core–shell polymer particles are used. Accordingly, this paper concerns with the synthesis of magnetic poly(styrene–divinylbenzene) latex particles using emulsion polymerization of styrene (St) and divinylbenzene (DVB) monomers in the presence of preformed oil in water organic ferrofluid emulsion droplets as seed. The key parameters which affect on formation and morphology of the prepared magnetic latexes were investigated, including type of magnetic emulsion, St/DVB monomers ratio, DVB amount, type of initiator and surfactant nature. In this study, two different magnetic emulsions were used, low and high octane content magnetic emulsions. The magnetic emulsions were stabilized using different types of surfactants including AP, Triton X 405 and SDS. In addition, four different initiators, including AIBN, V50, ACPA and KPS were examined. The morphology of the prepared magnetic latexes was investigated using transmission electron microscopy. In addition, particle size and size distribution, magnetic content and magnetic properties of the prepared magnetic latexes were also examined, using various techniques, e.g. dynamic light scattering, thermal gravimetric analysis and vibrating sample magnetometer, respectively. The results showed that the morphology type (Janus like, moon like and/or core–shell) of the prepared magnetic latex particles could be controlled depending mainly on the used formulation. In fact, the use of styrene monomer leads to anisotropic morphology. Whereas, the progressive use of DVB in presence of KPS intiator leads to a well-defined magnetic core and polymer shell structure.
Figure
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号