首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
In this study, we survey the history of mathematics education in Turkey starting with its historical roots in the foundation of the republic. The changes in mathematics education in Turkey over the last century are investigated through an analysis of changes in curricular documents for K-12 schools. We consider the factors and reasons affecting curriculum developments, changes in philosophy and structure in terms of standards, objective and instructions. This article utilizes archival research techniques by examining original sources and illustrates the nature of the changes benefiting from a historical perspective. As a result of such analysis of the aforesaid sources, we have seen that the main reasons for changing mathematics curricula are: to build up a modern civilization in Turkey; the reports of John Dewey and the recommendations of Kate Wofford, William C. Varaceus and Watson Dickerman; the desire to become a member of the European Union; international factors and political situations.  相似文献   

5.
6.
The terms inquiry-based learning and inquiry-based education have appeared with increasing frequency in educational policy and curriculum documents related to mathematics and science education over the past decade, indicating a major educational trend. We go back to the origin of inquiry as a pedagogical concept in the work of Dewey (e.g. 1916, 1938) to analyse and discuss its migration to science and mathematics education. For conceptualizing inquiry-based mathematics education (IBME) it is important to analyse how this concept resonates with already well-established theoretical frameworks in mathematics education. Six such frameworks are analysed from the perspective of inquiry: the problem-solving tradition, the theory of didactical situations, the realistic mathematics education programme, the mathematical modelling perspective, the anthropological theory of didactics, and the dialogical and critical approach to mathematics education. In an appendix these frameworks are illustrated with paradigmatic examples of teaching activities with inquiry elements. The paper is rounded off with a list of ten concerns for the development and implementation of IBME.  相似文献   

7.
A rational discussion of the use of Computer algebra systems (CAS) in mathematics teaching in general education needs an explicit image of (general) mathematics education, an explication of global perspectives and goals on mathematics teaching focusing on general education (chapter 1). The conception of general education according to the «ability of communication with experts» described in chapter 2 can be such an orientation for analysing, considering, classifying and assessing the didactical possibilities of using CAS. CAS are materialised mathematics allowing for more or less exhaustive outsourcing of operative (also symbolically) knowledge and skills to the machine. This frees up space of time as well as mental space for the development of those competences being in our view relevant for general mathematics education. In chapter 3 the idea of outsourcing and the role of CAS for it is discussed more detailed as well as consequences being possible for the CAS-supported teaching of mathematics. Beyond, CAS can be didactically used and reflected as a model of communication between (mathematical) experts and lay-persons (chapter 4). Chapter 5 outlines some research perspectives.  相似文献   

8.
This study addresses aspects that should be considered in every investigation concerning the reality of the subject being investigated, which in turn provide the basis for the procedures adopted to carry out the research. It speaks about the analysis of the procedures chosen to carry out the research. It is assumed that this care should be taken by the researcher at the moment the research procedures are being defined and made explicit. It is argued that the consonance between the ontological and epistemological dimensions of “what” and “how” to investigate the subject of investigation confers a degree of confidence to the research findings. The search for that confidence transcends analyses based only on calculations and explanations of methodological procedures, regardless of how well founded they are. This study addresses mathematics education specifically, adopting a phenomenological perspective. It is focused on the constitution of mathematical idealities and of mathematics as a science under the perspective of the Husserlian phenomenological conception of reality and knowledge. Characteristics of a phenomenological pedagogy are presented, which is carried out through work that is always intentional, with the educator taking account of what occurs with himself/herself, with the life world of the school, and with the student. The student is seen as a person and as being with others, his/her classmates, and the theme is addressed in the context of the field of inquiry under focus, with the teacher and with his/her “surroundings”.  相似文献   

9.
The role of metacognition in mathematics education is analyzed based on theoretical and empirical work from the last four decades. Starting with an overview on different definitions, conceptualizations and models of metacognition in general, the role of metacognition in education, particularly in mathematics education, is discussed. The article emphasizes the importance of metacognition in mathematics education, summarizing empirical evidence on the relationships between various aspects of metacognition and mathematics performance. As a main result of correlational studies, it can be shown that the impact of declarative metacognition on mathematics performance is substantial (sharing about 15–20% of common variance). Moreover, numerous intervention studies have demonstrated that “normal” learners as well as those with especially low mathematics performance do benefit substantially from metacognitive instruction procedures.  相似文献   

10.
Representation is a difficult concept. Behaviorists wanted to get rid of it; many researchers prefer other terms like “conception” or “reasoning” or even “encoding;” and many cognitive science resarchers have tried to avoid the problem by reducing thinking to production rules.There are at least two simple and naive reasons for considering representation as an important subject for scientific study. The first one is that we all experience representation as a stream of internal images, gestures and words. The second one is that the words and symbols we use to communicate do not refer directly to reality but to represented entities: objects, properties, relationships, processes, actions, and constructs, about which there is no automatic agreement between two persons. It is the purpose of this paper to analyse this problem, and to try to connect it with an original analysis of the role of action in representation. The issue is important for mathematics education and even for the epistemology of mathematics, as mathematical concepts have their first roots in the action on, and in the representation of, the physical and social world; even though there may be a great distance today between that pragmatical and empirical source, and the sophisticated concepts of contemporary mathematics.  相似文献   

11.
Stephen Lerman 《ZDM》2013,45(4):623-631
Whilst research on the teaching of mathematics and the preparation of teachers of mathematics has been of major concern in our field for some decades, one can see a proliferation of such studies and of theories in relation to that work in recent years. This article is a reaction to the other papers in this special issue but I attempt, at the same time, to offer a different perspective. I examine first the theories of learning that are either explicitly or implicitly presented, noting the need for such theories in relation to teacher learning, separating them into: socio-cultural theories; Piagetian theory; and learning from practice. I go on to discuss the role of social and individual perspectives in authors’ approach. In the final section I consider the nature of the knowledge labelled as mathematical knowledge for teaching (MKT). I suggest that there is an implied telos about ‘good teaching’ in much of our research and that perhaps the challenge is to study what happens in practice and offer multiple stories of that practice in the spirit of “wild profusion” (Lather in Getting lost: Feminist efforts towards a double(d) science. SUNY Press, New York, 2007).  相似文献   

12.
This article covers a project conducted by the Freudenthal Institute from August 1991 to September 1994 entitled “The graphics calculator in mathematics education.” The theory of realistic mathematics education was taken as the point of departure for formulating the hypotheses. The developmental research design was used. Observation of the students' behavior during the experimental lessons supports the premise that the graphics calculator can stimulate the use of realistic contexts, the exploratory and dynamic approach to mathematics, a more integrated view of mathematics, and a more flexible behavior in problem solving.  相似文献   

13.
Karl Josef Fuchs 《ZDM》2003,35(1):20-23
The paper gives an overview of the increasing influence of Computer Algebra Systems in Mathematics Education. On one hand the new aims when teaching this new media will be shown. On the other hand examples will illustrate the principles behind the contents chosen for the lectures. Basic ideas of mathematics and computerscience will appear just as well as basic concepts of Mathematics Education.  相似文献   

14.
Proving is an essential activity in mathematics but there are serious difficulties encountered by mathematics undergraduates in engaging with proof in the intended way. This article presents an initial analysis of (i) a quantitative study of a large sample of UK mathematics undergraduates which describes their declared perceptions about proof, and (ii) a qualitative study of a subsample of these students which analyses their actual proof perceptions as well as their actual proof practices. A comparison is also made between their publicly declared perceptions of proof and their personal proclivities in proving.  相似文献   

15.
Luis Moreno-Armella 《ZDM》2014,46(4):621-633
There is a problem that goes through the history of calculus: the tension between the intuitive and the formal. Calculus continues to be taught as if it were natural to introduce the study of change and accumulation by means of the formalized ideas and concepts known as the mathematics of ε and δ. It is frequently considered as a failure that “students still seem to conceptualize limits via the imagination of motion.” These kinds of assertions show the tension, the rift created by traditional education between students’ intuitions and a misdirected formalization. In fact, I believe that the internal connections of the intuition of change and accumulation are not correctly translated into that arithmetical approach of ε and δ. There are other routes to formalization which cohere with these intuitions, and those are the ones discussed in this paper. My departing point is epistemic and once this discussion is put forward, I produce a narrative of classroom work, giving a special place to local conceptual organizations.  相似文献   

16.
17.
18.
In this article we survey the current debate on modelling and, describe different perspectives on this debate. We relate these perspectives with earlier perspectives and show similarities and differences between these different approaches.  相似文献   

19.
This paper describes the broad lines of the development of mathematics education in Brazil since 1500, emphasizing the development of secondary mathematics education. We divide this history into seven major periods, based on the political and cultural development of Brazilian society, and stress the characteristics of each period.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号