首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liquid-phase migration and jamming of the suspended particles appear to be the cause of the previously reported drastic changes in the normal stress distribution in concentrated suspensions subjected to squeeze flow as the initial volume fraction is raised above a critical value. Liquid-phase migration was found to depend on the initial volume fraction of solids, the viscosity of the suspending fluid, and the size of the particles. Under some conditions, liquid-phase migration did not take place to any significant degree; however, under other conditions, the volume fraction of solids increased throughout the sample, but especially in the central region, as liquid was expelled from the test region in preference to the solids. Criteria for the occurrence of liquid-phase migration in suspensions undergoing squeeze flow are discussed in terms of dimensionless groups.  相似文献   

2.
Liquid-phase migration in highly concentrated suspensions undergoing constant-force squeeze flow is modeled numerically by taking into account the time and position dependence of the rheological properties due to changes in the volume fraction of solids. This is done by coupling the equation of motion for a non-Newtonian material that behaves approximately as a Bingham plastic with a continuity equation that includes diffusive flux. The developed model was first tested with experimental data and then used to study the effect of various parameters on liquid-phase migration.  相似文献   

3.
Free-surface flows of concentrated suspensions exhibit many interesting phenomena such as particle segregation and surface corrugation. In this work the flow structures associated with free-surface has been studied experimentally. The free-surface velocity for neutrally buoyant suspension of uniform spheres in a gravity driven inclined channel flow was determined by particle imaging velocimetry (PIV) technique. Experiments were carried out for concentrated suspensions with particle fractions ? ranging from 0.40 to 0.50. The measured velocities show blunted profile in the channel. The blunting of the velocity profile increases with the particle concentration. The rms velocity fluctuations measured at the free-surface progressively increase with particle fraction ? and are linear in shear rate γ. The surface roughness were characterized by analyzing the power spectral density of the refracted light from the free-surface. The characteristics observed are in support of earlier findings.  相似文献   

4.
The development of flow instabilities during the capillary flow of two concentrated suspensions filled with 76.5 and 65.6% by volume solids was investigated. The flow instabilities manifested themselves by the development of concentration gradients as a result of the filtering of the binder, superimposed on the bulk motion of the suspension. The effects of apparent shear rate, capillary diameter and the surface roughness of the particles were investigated. The use of the comparison of the filtration rate with the bulk velocity of the suspension during flow is shown to be promising for the prediction of the apparent shear rate at which filtration-based flow instabilities occur.  相似文献   

5.
This paper discusses the axisymmetric squeeze flow of concentrated transversely isotropic fibre suspensions in a power-law matrix and relates to the processing of composite materials such as sheet moulding compounds (SMCs) and glass mat thermoplastics (GMTs). A solution to the squeeze flow problem for a transversely isotropic power-law fluid is presented first, followed by a more detailed micromechanical analysis. In the first part of the paper a variational approach is applied to the interpretation of squeeze flow behaviour. This gives a simple expression for the total pressure, which enables the contributions due to extension and shear to be separated. Applying the procedure to GMT data suggests that the dissipation is predominantly extensional, except at very low plate separations. In the second part, a non-local constitutive equation is derived based on a simple drag law for hydrodynamic interactions. This is then used to model the pressure distribution when the effective length of the fibres is comparable to or determined by the dimensions of the squeeze flow plates. The model is shown to describe the observed squeeze flow stresses in both long and short fibre systems and to relate behaviour to the underlying resin flow properties.  相似文献   

6.
7.
Studying the flow of highly concentrated granular suspensions represents a great challenge since they are characterized by a rather complex rheological behavior. In addition, macroscopic heterogeneities may be induced by the flow during rheological measurements due to the eventual relative motion between the liquid and the granular phases that may take place under certain conditions. Solid–liquid separation may ultimately lead to flow blockage. In the present investigation we consider experimentally the influence of the rheological properties of the suspending fluid on the transition between the flow and blockage of a concentrated suspension in a squeeze set-up geometry. The suspending fluid consists of an aqueous Xanthan solution for which rheological properties can be tuned by changing the polymer concentration. For each polymer concentration, it is shown that there exist flow parameters (squeeze velocity and gap thickness) for which one has a transition between homogeneous flow of the suspension and its blockage. Blockage diagrams, delimiting flowability and blockage zones, are then determined. Physical arguments are given to relate the evolution of the blockage diagrams to the flow parameters and rheological properties of suspending fluid.  相似文献   

8.
A new approach was taken to understand the flow behavior of concentrated particle suspensions in pressure-driven capillary flow. The flow of concentrated alumina suspensions in a slit channel was visualized and quantitatively analyzed with modified capillary rheometer. The suspensions showed complex flow behaviors; unique solid–liquid transition and shear banding. At low flow rates, 55 vol% alumina suspension showed a unique transient flow behavior; there was no flow at first and continuous change of flow profile was observed with time. At low shear rates in particular, the suspensions exhibited shear-banded flow profile which could be divided into three regions: the region with low flow rate near the wall, the region with rapid increase of flow velocity to maximum, and the region of velocity plateau. Based on both flow visualization and measurement of shear stress, it was found that the shear-banded flow profile in pressure-driven slit channel flow was strongly correlated with shear stress. The banding in pressure-driven flow was different from that in Couette flow. The banding of concentrated alumina suspensions was unique in that sluggish velocity profile was pronounced and two inflection points in velocity profile was exhibited. In this study, shear banding of concentrated alumina suspensions in slit channel flow was visualized and quantitatively analyzed. We expect that this approach can be an effective method to understand the flow behavior of particulate suspensions in the pressure-driven flow which is typical in industrial processing.  相似文献   

9.
The yield stress and features of the structure of concentrated suspensions based on silica flour, with particles of average diameter around 4 m, were investigated in terms of a phenomenological model. The yield stress of a concentrated suspension of known solid volume concentration is estimated by employing a shear-dependent maximum packing fraction m which is obtained by model fitting equilibrium viscosity data, and by incorporating a first-order kinetic equation. The model proposed was examined by using several mineral suspensions in which silica flour was mixed with metal oxide particles so that microstructural features of the suspensions could be adjusted. A cocoa fat suspension was also used as a test sample having radically different chemistry. The agreement between the model prediction and independently obtained experimental evidence is acceptable. Furthermore, a qualitative explanation is obtained by a scaling analysis in an effort to relate the model parameters with the suspension structure that stems from interactions among the suspension constituents.  相似文献   

10.
11.
T. Dabak  O. Yucel 《Rheologica Acta》1986,25(5):527-533
A method is proposed for determining the shear viscosity behavior of highly concentrated suspensions at low and high shear-rates through the use of a formulation that is a function of three parameters signifying the effects of particle size distribution. These parameters are the intrinsic viscosity [], a parametern that reflects the level of particle association at the initiation of motion and the maximum packing concentration m. The formulation reduces to the modified Eilers equation withn = 2 for high shear rates. An analytical method was used for the calculation of maximum packing concentration which was subsequently correlated with the experimental values to account for the surface induced interaction of particles with the fluid. The calculated values of viscosities at low and high shear-rates were found to be in good agreement with various experimental data reported in literature. A brief discussion is also offered on the reliability of the methods of measuring the maximum packing concentration. r = /0 relative viscosity of the suspension - volumetric concentration of solids - k n coefficient which characterizes a specific effect of particle interactions - m maximum packing concentration - r,0 relative viscosity at low shear-rates - [] intrinsic viscosity - n, n parameter that reflects the level of particle interactions at low and high shear-rates, respectively - r, relative viscosity at high shear-rates - (m)s, (m)i, (m)l packing factors for small, intermediate and large diameter classes - v s, vi, vl volume fractions of small, intermediate and large diameter classes, respectively - si, sl coefficient to be used in relating a smaller to an intermediate and larger particle group, respectively - is, il coefficient to be used in relating an intermediate to a smaller and larger particle group, respectively - ls, li coefficient to be used in relating a larger to a smaller and intermediate particle group, respectively - m0 maximum packing concentration for binary mixtures - m,e measured maximum packing concentration - m,c calculated maximum packing concentration  相似文献   

12.
Various structured fluids were placed between the parallel circular plates of a squeeze-flow rheometer and squeezed by a force F until the fluid thickness h was stationary. Fluid thickness down to a few microns could be measured. Most fluids showed two kinds of dependence of f on h according to an experimentally-determined thickness h *. If h > h * then F varied in proportion to h −1 as predicted by Scott (1931) for a fluid with a shear yield stress τ0. The magnitude of τ0 from squeeze-flow data in this region was compared with the yield stress measured by the vane method. For some fluids τ0 measured by squeeze flow was less than the vane yield stress, suggesting that the yield stress of fluid in contact with the plates was less than the bulk yield stress. If h < h * then F varied approximately as h −5/2 and the squeeze-flow data in this region analysed with Scott's relationship gave a yield stress which increased as the fluid thickness decreased. This previously unreported effect may result from unconnected regions of large yield stress in the fluid of size similar to h * which are not sensed by the vane and which become effective in squeeze flow only when h < h *. Received: 13 December 1999/Accepted: 4 January 2000  相似文献   

13.
In this work we have experimentally measured the apparent wall slip velocity in open channel flow of neutrally buoyant suspension of non-colloidal particles. The free surface velocity profile was measured using the tool of particle imaging velocimetry (PIV) for two different channels made of plane and rough walls. The rough walled channel prevents wall slip, whereas the plane wall showed significant wall slip due to formation of slip layer. By comparing the velocity profiles from these two cases we were able to determine the apparent wall slip velocity. This method allows characterization of wall slip in suspension of large sized particles which cannot be performed in conventional rheometers. Experiments were carried out for concentrated suspensions of various particle volume concentrations and for two different sizes of particles. It was observed that wall slip velocity increases with particle size and concentration but decreases with increase in the viscosity of suspending fluid. The apparent wall slip velocity coefficients are in qualitative agreement with the earlier measurements. The effect of wall slip on free surface corrugation was also studied by analyzing the power spectral density (PSD) of the refracted light from the free surface. Our results indicate that free surface corrugation is a bulk flow response and it does not arise from boundary problem such as development of slip layer.  相似文献   

14.
I. Yaron  B. Gal-Or 《Rheologica Acta》1972,11(3-4):241-252
Summary Previous analysis byHappel (3) of viscous flow in concentrated solid suspensions has been extended to include concentrated emulsions of slightly deformable fluid particles in the presence or absence of surfactant impurities.General expressions were obtained for viscous flow in multi-particle systems when arbitrary shear fields are imposed. Specific relations were then derived for uniform,Couette and hyperbolic fields. The behavior is found to be strongly dependent upon particle concentration and surfactant concentration. The theoretical expressions obtained for effective viscosity of emulsions compare favorably with experimental data ofNeogy andGhosh (18),Sibree (15),Sherman (17), andBroughton andWindebank (16). These results support other studies on ensemble velocities [(10), (12), and in particular (22)], which strongly indicate the practical value and factual reliability of cell models in predicting the behavior of suspensions and emulsions.  相似文献   

15.
Bashkirtseva  Irina  Ryashko  Lev 《Nonlinear dynamics》2020,100(3):1837-1925
Nonlinear Dynamics - This article presents an overview of breaking waves and liquid sloshing impact acting on rigid walls and in liquid containers. The physics of breaking waves against rigid walls...  相似文献   

16.
The experiments were conducted in 54.9 mm diameter horizontal pipe on two sizes of glass beads of which mean diameter and geometric standard deviation are 440 μm & 1.2 and 125 μm & 1.15, respectively, and a mixture of the two sizes in equal fraction by mass. Flow velocity was up to 5 m/s and overall concentration up to 50% by volume for each velocity. Pressure drop and concentration profiles were measured. The profiles were obtained traversing isokinetic sampling probes in the horizontal, 45° inclined and vertical planes including the pipe axis. Slurry samples of the mixture collected in the vertical plane were analyzed for concentration profiles of each particle batch constituting the mixture. It was found that the pressure drop is decreased for the mixture at high concentrations except 5 m/s and a distinct change of concentration profiles was observed for 440 μm particles indicating a sliding bed regime, while the profiles in the horizontal plane remains almost constant irrespective of flow velocity, overall concentration and slurry type.  相似文献   

17.
Summary The explanation for the very common phenomenon of linearity of double logarithmic plots of stress and shear-rate for shear-thinning concentrated suspensions, proposed in earlier papers, has been much extended. A definite model is proposed which, while not claiming to describe real systems in detail, leads to the linearity of the log-log curves and probably represents fairly well the actual behaviour of such systems as thick fresh dairy creams at low temperatures.  相似文献   

18.
19.
In order to eventually predict the behavior of long fiber suspensions in complex flows commonly found in processing operations, it is necessary to understand their rheology and its connection to the evolution of fiber orientation and configuration in well defined flows. In this paper we report the transient behavior at the startup of shear flow of a polymer melt containing long glass fibers with a length (L) >1 mm, using a sliding plate rheometer (SPR). The operation of the SPR was confirmed by comparing the transient shear viscosity (η+) for a polymer melt and a melt containing short glass fibers (L < 1 mm) with measurements obtained from a cone-and-plate device, using a modified sample geometry that was designed to avoid wall effects. For the long fiber systems, measurements could only be obtained in the SPR because these systems would not stay within the gap of the rotational rheometer. Transient stress growth behavior of the long fiber systems was obtained as a function of shear rate and fiber concentration for samples prepared with three different initial orientations. Results showed that, unlike short fiber systems (with a random planar initial orientation) that usually exhibit a single overshoot peak followed by a steady state, η+ of the long fiber suspensions often passed through multiple transient regions, depending on the fiber concentration and applied shear rate. Additionally, η+ of the long fiber suspensions was found to be highly dependent on the initial orientation of the sheared samples. Finally, the initial and final fiber orientations of the long glass fiber samples were measured and used to initiate an explanation of the viscosity behavior. The results obtained in this research will be useful for future assessment of a quantitative correlation between transient rheology and the evolution of fiber orientation.  相似文献   

20.
An overview of present understanding of microstructure in flowing suspensions is provided. An emphasis is placed on how the microstructure leads to observable bulk flow phenomena unique to mixtures. The bridge between the particle and bulk scales is provided by the mixture rheology; one focus of the review is on work that addresses the connection between microstructure and rheology. The non-Newtonian rheology of suspensions includes the well-known rate dependences of shear thinning and thickening, which have influence on bulk processing of suspensions. Shear-induced normal stresses are also measured in concentrated suspensions and include normal stress differences, and the isotropic particle pressure. Normal stresses have been associated with shear-induced migration, and thus have influence on the ultimate spatial distribution of solids, as well as the flow rate during processing; a second focus is on these uniquely two-phase behaviors and how they can be described in terms of the bulk rheology. An important bulk fluid mechanical consequence of normal stresses is their role in driving secondary flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号