首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
X.B. Liu  J.G. Li 《Journal of Non》2004,333(1):95-100
The microstructure evolution of decagonal quasicrystals in Al72Ni12Co16 alloy was investigated by the electromagnetic melting and cyclic superheating method. Single-phase decagonal quasicrystals have been obtained when the undercoolings were larger than 60 K. The decagonal quasicrystals formed at various undercoolings show different microstructural morphologies. Furthermore, grain refinement was found near the undercooling of 120 K. Based on current thermodynamic and dendrite growth theories, a dimensionless superheating parameter was adopted to explain the effect of processing conditions on the microstructure of Al72Ni12Co16 alloy. The result indicate that the fine equiaxied microstructure of decagonal quasicrystal (D-phase) formed near on undercooling of 120 K originates from the break-up of dendrites.  相似文献   

2.
D. Roy  H. Raghuvanshi 《Journal of Non》2011,357(7):1701-1704
The crystallization behavior and thermal stability of amorphous phases of Al65Cu20Ti15 alloy obtained by mechanical alloying were investigated by using in-situ X-ray diffraction and differential scanning calorimetry (DSC) under non isothermal and isothermal conditions. The result of a Kissinger analysis shows that the activation energy for crystallization is 1131 kJ/mol. The higher stability against crystallization of Al65Cu20Ti15 amorphous alloy is attributed to the stronger interaction of atoms in the Al-Cu-Ti system and formed of complicated compound like Al5CuTi2 and Al4Cu9 as primary phases. The isothermal crystallization was modeled by using the Johnson-Mehl-Avrami (JMA) equation. The Avarami exponents suggest that the isothermal crystallization is governed by a three-dimensional diffusion-controlled growth.  相似文献   

3.
The crystallization behavior and microstructure development of the Zr61Al7.5Cu17.5Ni10Si4 alloy during annealing were investigated by isothermal differential scanning calorimetry, X-ray diffractometry and transmission electron microscopy. During isothermal annealing of the Zr61Al7.5Cu17.5Ni10Si4 alloy at 703 K, Zr2Cu crystals with an average size of about 5 nm were first observed during the early stages (30% crystallization) of crystallization by TEM. The Zr2Cu crystal size increased with annealing time and attained an average size of 20 nm corresponding to the stage of 80% crystallization. In addition, the change in particle size with increasing annealing time exhibited a linear relationship between grain growth time and the cube of the particle size for the Zr2Cu type crystalline phase. This indicates that the crystal growth of the Zr61Al7.5Cu17.5Ni10Si4 alloy belongs to a thermal activated process of the Arrhenius type. The activation energy for the grain growth of Zr2Cu is 155 ± 20 kJ/mol in the Zr61Al7.5Cu17.5Ni10Si4 amorphous alloy. The lower activation energy for grain growth in compared to that for crystallization in Zr65Cu35 440 kJ/mol crystal corresponds to the rearrangement of smaller atoms in the metallic glass, Al or Si (compare to Zr).  相似文献   

4.
Barite-type α-BaBeF4 (a = 8.8594(3), b =5.3265(2), c = 7.0493(2) Å, Pnma (No. 62)) and Ba(BeF4)0.535(7)(SO4)0.465(7) (a = 8.8657(2), b = 5.3902(2), c = 7.1007(2) Å, Pnma (No. 62)) were prepared by precipitation from aqueous solutions and their structures refined from laboratory X-ray powder diffraction data. In the case of α-BaBeF4 it was possible to identify the light atom Be on a difference Fourier map and to refine its positional parameters in the presence of a heavy atom (Ba). Both phases contain almost ideal isolated BX42− tetrahedra (B = Be, Be/S and X = F, F/O) together with Ba, that is 12-fold coordinated by X. The plausibility of the resulting structures was proved with the help of the bond valence model. For both compounds no phase transitions were found up to 550C.  相似文献   

5.
Amorphous ribbon specimen of (Ni0.75Fe0.25)78Si10B12 has been prepared by a single roller melt-spinning technique in the air atmosphere. The crystallization kinetics of the alloy has been investigated using different thermal analysis by means of continuous heating and isothermal heating. The activation energy of the alloy has been calculated by using Kissinger plot method and Ozawa plot method based on differential thermal analysis data, respectively. The products of crystallization have been analyzed by X-ray diffraction. A single phase of γ-(Fe, Ni) solid solution with grain size of about 10.3 and 18.5 nm precipitates in the amorphous matrix after annealing at temperatures 715 and 745 K, respectively. The crystallized phases are γ-(Fe, Ni) solid solution, Fe2Si, Ni2Si, Fe3B and unidentified phase after annealing at 765 K. The details of nucleation and growth during the isothermal crystallization are expatiated in terms of local Avrami exponent and local activation energy.  相似文献   

6.
Potentiodynamic polarization studies were carried out on virgin specimens of Zr-based bulk amorphous alloys Zr46.75Ti8.25Cu7.5Ni10Be27.5 and Zr65Cu17.5Ni10Al7.5, and conventional-type binary amorphous alloys Zr67Ni33 and Ti60Ni40 in solutions of 0.2 M, 0.5 M and 1.0 M HNO3 at room temperature. The values of the corrosion current density (Icorr) for the bulk amorphous alloy Zr46.75Ti8.25Cu7.5Ni10Be27.5 were found to be comparable with those of Zr65Cu17.5Ni10Al7.5 in 0.2 M and 0.5 M HNO3, but the value of Icorr for the former was almost three times more than that of the latter in 1.0 M HNO3. In the case of conventional binary amorphous alloys, Ti60Ni40 showed lower value of Icorr as compared to Zr67Ni33 in 0.5 M and 1.0 M HNO3 and a comparable value of Icorr in 0.2 M HNO3. In general, the binary Ti60Ni40 displayed the best corrosion resistance among all the alloys in all the cases and the corrosion current density (Icorr) for all the alloys was found to increase with the increasing concentration of nitric acid. It is noticed that the bulk amorphous alloys do not possess superior corrosion resistance as compared to conventional binary amorphous alloys in aqueous HNO3 solutions. The observed differences in their corrosion behavior are attributed to different alloy constituents and composition of the alloys investigated.  相似文献   

7.
Kinetics of the first crystallization stage of Al86Ni2Co5.8Gd5.7Si0.5 amorphous alloy and structure of the partially crystallized specimens were investigated by measurements of electrical resistance, X-ray diffraction and transmission electron microscopy. The presence of Al nanocrystals and eutectic colonies consisted of mutually oriented crystals of Al and metastable phase was found. The transient nucleation and slowing-down diffusion-limited growth and the interface-controlled growth of the quenched-in nuclei were identified as mechanisms of formation of the Al nanocrystals and eutectic colonies, respectively.  相似文献   

8.
T. Mika  G. Haneczok  E. ?agiewka 《Journal of Non》2008,354(27):3099-3106
Crystallization of amorphous Al-based alloys (Al-Y-Gd-Ni-Fe) was investigated by applying differential scanning calorimetry (DSC), X-ray diffraction (XRD) and high resolution electron microscopy (HREM). It was shown that the crystallization in the examined alloys proceeds in three stages (DSC maxima). The two first stages are attributed to formation of solid solution of fcc Al(RE) nanograins in amorphous matrix. In the third stage the precipitation of ternary compound Al19Ni5RE3 of the orthorhombic Al19Ni5Gd3-type structure was observed. A partial substitution of Ni by Fe causes a change of stoichiometry and crystal structure of the ternary compounds: Al8TM4RE (TM = Fe, Ni; RE = Y, Gd) of the tetragonal ThMn12 (Al8Mn4Ce)-type structure. A partial replacing of Y atoms by Gd in the Al87Y5Ni8 based alloy shifts the Al(RE) nanocrystallization to lower temperatures. In contrast to this a partial replacing of Ni by Fe shifts the nanocrystallization to higher temperatures.  相似文献   

9.
The influence of outphase Cu50Ti50 amorphous alloy addition on microstructural evolution of Zr66.7Ni33.3 amorphous alloy has been investigated using a mechanical alloying method. It has been found that the milling induced microstructural evolution is related to the change of peak positions of the first maximum on X-ray diffraction patterns of the as-obtained amorphous alloys. With increasing milling time, the 3 wt.% Cu50Ti50 addition can give rise to the cyclic amorphization transformation of the as-milled alloy. The mechanical stability of the mixing amorphous phase can be greatly enhanced with increasing Cu50Ti50 addition up to 10 wt.%. Moreover, the addition of outphase Cu50Ti50 amorphous alloy not only increases the onset crystallization temperature of Zr66.7Ni33.3 amorphous alloy but also alters its crystallization mode. The effect of outphase amorphous addition on the mechanical stability of the Zr66.7Ni33.3 amorphous phase has been discussed based upon the bond order theory.  相似文献   

10.
11.
The phases of variable composition Ca3 − 3x Nd2x (AO4)2 (A = P, V; 0 ≤ x ≤ 0.14) based on calcium orthophosphate or orthovanadate are studied by Raman spectroscopy. The influence of the composition and temperature on the structural features of these compounds is considered. The changes observed in the Raman spectra at high temperatures are associated with the reversible phase transition due to the redistribution of calcium over different positions and partial reorientation of the AO4 tetrahedra. __________ Translated from Kristallografiya, Vol. 49, No. 2, 2004, pp. 262–265. Original Russian Text Copyright ? 2004 by Kovyazina, Perelyaeva, Leonidova, Leonidov, Ivanovskii. This work was presented at the National Conference on Crystal Growth (NCCG-2002, Moscow).  相似文献   

12.
A spherical-shaped model of Al0.20As0.50Te0.30, Al0.10As0.40Te0.50 and Al0.10As0.20Te0.70 amorphous alloys has been performed by the random Monte Carlo method. These models describe quite well the experimental radial distribution functions and abide by the expected coordination numbers apart from the threefold coordinated Te, of which an excess has appeared. The structures are formed, basically, of distorted tetrahedra around the Al atoms whose corners are occupied by As or Te atoms. Also, a separated phase model for Al0.10As0.20Te0.70 alloy has been built taking into account the results of thermodynamical study on this amorphous alloy system. The fitting of this model was better than that of the model generated under the hypothesis of a continuous phase.  相似文献   

13.
The magnetic properties of quasicrystalline Al65Cu22Fe13 powders synthesized by solid-phase diffusion as a result of thermal treatment in vacuum and in a hydrogen atmosphere have been studied. The magnetic properties of the samples synthesized in hydrogen were found to be much better than those of the samples synthesized in vacuum. It is shown that an increase in the treatment time in vacuum decreases the number of magnetic nanoclusters and elimninates the time instability of their magnetic properties (magnetic susceptibility and magnetization).  相似文献   

14.
The nonstoichiometric Ca1−x LaxF2+x phase (x ≥ 0.1) is obtained by mechanochemical synthesis from CaF2 and LaF3 single crystals. This phase is the first representative of fluorite fluorides obtained by mechanochemical synthesis in the MFm-RFn systems (m < n ≤ 4). The average grain size ranges within 10–30 nm. The temperature dependence of ionic conductivity of the mechanochemically synthesized phase pressurized at 600 MPa (at its high-temperature portion at temperatures exceeding 200–250°C) coincides with the conductivity of the single crystals of the same composition (Ca0.8La0.2F2.2). The activation energy of ionic conductivity (0.95 eV) corresponds to migration of interstitial fluoride ions in the crystal bulk. Mechanochemical synthesis of a multicomponent fluoride material with nanometer grains opens a new chapter in the chemistry of inorganic fluorides. A decrease of the sintering temperature of the powders with nanometer grains is very important for preparing dense fluoride ceramics of complicated compositions and other polycrystalline forms of fluoride materials. __________ Translated from Kristallografiya, Vol. 50, No. 3, 2005, pp. 524–531. Original Russian Text Copyright ? 2005 by Sobolev, Sviridov, Fadeeva, Sul’yanov, Sorokin, Zhmurova, Herrero, Landa-Canovas, Rojas.  相似文献   

15.
A complete literature review, critical evaluation, and thermodynamic modeling of the phase diagrams and thermodynamic properties of all oxide phases in the ternary Al2O3–B2O3–SiO2 system at 1 bar pressure are presented. The molten oxide phase is described by the Modified Quasichemical Model and the Gibbs energy of the mullite solid solution is modeled using the Compound Energy Formalism. A set of optimized internally consistent thermodynamic functions for all the phases is presented. With the thermodynamic dataset, all available and reliable thermodynamic and phase equilibrium data can be reproduced within experimental error limits from 25 °C to above the liquidus temperatures. In addition, the reasonable predictions obtained for phase relations in the experimentally unexplored composition ranges suggest that the thermodynamic database can be used along with appropriate Gibbs energy minimization routines to calculate thermodynamic properties, phase equilibria, and phase diagrams of interest.  相似文献   

16.
The evolution of structure, phase composition and spectroscopic properties of CoO-doped (up to 5 mol%) titania-containing zinc aluminosilicate glasses with their heat-treatment has been studied using Raman scattering, small angle X-ray scattering, X-ray diffraction analysis and optical absorption spectra. Addition of cobalt oxide was observed to facilitate amorphous phase separation of the parent glass and gahnite, ZnAl2O4, crystallization. Cobalt oxide entered phases formed during low-temperature heat-treatments (720 °C), i.e., amorphous phase, enriched in ZnO, Al2O3 and TiO2 and crystalline phase of gahnite. The absorption of these glass-ceramics was defined mainly by tetrahedral Co2+ ions located in gahnite nanocrystals. As the temperature was increased further, traces of anosovite solid solution appeared and then decomposed. Even after high-temperature heat-treatments, a certain portion of Co2+ ions remained in amorphous zinc aluminotitanate phase and in octahedral sites of inversed gahnite spinel. In glass-ceramics, the residual high silica amorphous phase contained a small quantity of [TiO4] centers, which content was smaller in Co:ZAS samples as compared with non-doped glass-ceramics.  相似文献   

17.
The previous experimental data on the partial spectra of thermal atomic vibrations in icosahedral (Al62Cu25.5Fe12.5) and decagonal (Al71.3Ni24Fe4.7) quasicrystals have been used to perform a comparative analysis of the atomic dynamics features and determine the role that Al, Cu, Ni, and Fe atoms play in the formation of interatomic interaction in the alloys studied. A physical model of the decagonal quasicrystal structure is proposed.  相似文献   

18.
In the present work investigations on the effect of stoichiometric variations on the Occurrence and stabilization of quasicrystalline (qc) and related phases have been carried out. Based on the explorations of several Al-deficient and Al-rich versions of the ideal nominal composition i.e. Al65Cu20Cr15, it has been found that the alloy compositions corresponding to Al62Cu23Cr15 (Al-deficient) and Al68Cu17Cr15 (Al-rich) exhibit several structural subtleties. The Al-deficient alloy, has been found to exhibit crystalline bcc and fcc phases with a = 8.90 Å and a = 17.98 Å respectively. In addition to these phases, a new crystalline bcc variant (a = 15.42 Å) originating from the bcc (a = 8.90 Å) phase has been found. Also a curious superstructure of the fcc (a = 17.98 Å) has been observed. The Al-rich alloy typified by Al68Cu17Cr15, on the other hand, does not exhibit any structural variants, instead it shows nearly pure i-phase.  相似文献   

19.
The optimum compositions of the melts used for the growth of yttrium-aluminum garnet (YAG) single crystals with different neodymium contents are determined using the phase diagram of the ternary system Y2O3-Al2O3-Nd2O3 with the binary sections Y3Al5O12-Nd2O3 and Y3Al5O12-Nd3Al5O12. A number of melt compositions characterized by one garnet phase, namely, (Y,Nd)3Al5O12, are established. Single crystals of yttrium-aluminum garnets with a high content of the activator (up to 2.6 wt % Nd) are grown by the Czochralski method. __________ Translated from Kristallografiya, Vol. 48, No. 5, 2003, pp. 945–949. Original Russian Text Copyright ? 2003 by Soboleva, Chirkin. Dedicated to the 60th Anniversary of the Shubnikov Institute of Crystallography of the Russian Academy of Sciences  相似文献   

20.
《Journal of Non》2007,353(16-17):1670-1675
A series of alloys designed along a Ti9(Ni,Co)4–Zr e/a-variant line in the Ti–Zr–(Ni, Co) pseudo-ternary alloy system, are investigated by XRD and TEM. Experimental results show that bulk icosahedral quasicrystals (IQC) prepared by copper mold suction casting, can be obtained in a large region from Ti55Zr20(Ni,Co)25 to Ti34.6Zr50(Ni,Co)15.4 with Ni/Co ratio equal to 3/1, and in a sharply diminished region from Ti48Zr30(Ni,Co)22 to Ti42Zr40(Ni,Co)18 with decreased Ni/Co ratio equal to 2/2 or 1/3. Ti48Zr30Ni16.5Co5.5 is the optimal quasicrystal-forming composition, where a nearly pure bulk IQC phase is achieved. The stepwise substitutions of Co for Ni in this pseudo-ternary system contribute to the formation of Ti2Ni, fcc-Zr2Ni, C14-type Laves and β-(Ti, Zr) solid solution phases. However, these substitutions greatly reduce the forming ability of the IQC phase. It is suggested that Co is essentially unfavorable to Ti/Zr-based quasicrystal formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号