首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new procedure for the preparation of high aspect ratio Au nanowires utilizing gold electroless reduction in the hexagonally ordered, thiol-modified nanosized channels of the SBA-15 material is reported. Two different Au precursors were adsorbed onto pedant thiol groups, covalently bonded to the mesoporous silica surface, and used as seeds to grow extended Au nanostructures by treatment in Au electroless reduction bath. It is shown that the dimensions and the assembly of the Au seeds are important parameters for the subsequent electroless reduction process. The [AuCl4]- ions complexed to the TOAB molecules assembled on the thiol-modified mesoporous surface of the SBA-15 material are suitable precursors for the subsequent gold electroless reduction. The resulting structures are several micrometer long Au nanowires with uniform diameters of about 5 nm, having large single-crystalline domains. The TEM results clearly show that the growth of the Au nanowires is templated by the channel structure of the SBA-15 material.  相似文献   

2.
By monitoring the time evolution of the optical absorption spectrum corresponding to dy-namic information of aspect ratio (AR) and volume, we succeeded in following the growth kinetics of gold nanorods. The results indicate that the rods growth consists of two stages: seeds develop into rods with a fast AR increase and the rods grow big with constant AR. Here, a charge transfer model, involving positive charge transfer from Au(I) to seed and neu-tralization by electron from ascorbic acid, has been introduced to explain the autocatalysis mechanism of rod growth. The good agreement between the numerical simulation based on this moldel and experimental results supports the proposed mechanism.  相似文献   

3.
Electrochemically prepared Au nanorods were used as seeds for the overgrowth of thin shells of gold, silver, and palladium by using a mild reducing agent, ascorbic acid, in the presence of surfactants at ambient condition. The unique crystal facets of the starting nanorods results in anisotropic crystal overgrowth. The overgrowth rates along different crystallographical directions can be further regulated by adding foreign ions or by using different metal reduction methods. This overgrowth study provides insights on how different metal ions could be reduced preferentially on different Au nanorod surfaces, so that the composition, aspect ratio, shape, and facet of the resulting nanostructures can be rationally tuned. These surfactant-stabilized bimetallic Au(core)M(shell) (M=Au, Ag, Pd) nanorod colloids might serve as better substrates in surface-enhanced Raman spectroscopy as well as exhibiting enhanced catalytic properties.  相似文献   

4.
The synthesis of short aspect ratio gold nanorods using gamma radiation method by incorporating cetyltrimethyl ammonium bromide (CTAB) as a directing agent is reported in this communication. The radiolysis of Au+, in the presence of 2.5 nm Au seeds and 0.1 mol dm?3 isopropanol, results in the formation of Au spheres as evident from surface plasmon resonance band at 527 nm. However, by carrying out radiolysis at lower radiation dose rate, short aspect gold nanorods having surface plasmon bands at 513 and 670 nm have been prepared. The formation of rods at low radiation dose rate was observed to be governed by the kinetics of particle growth. The TEM of as-synthesized nanoparticles confirmed the formation of uniform sized nanorods having an aspect of 2.4.  相似文献   

5.
We propose a general nucleation and growth model that can explain the mechanism of the formation of CoPt(3)/Au, FePt/Au, and Pt/Au nanodumbbells. Thus, we found that the nucleation event occurs as a result of reduction of Au(+) ions by partially oxidized surface Pt atoms. In cases when Au(3+) is used as a gold precursor, the surface of seeds should be terminated by ions (e.g., Co(2+), Pb(2+)) that can reduce Au(3+) to Au(+) ions, which can further participate in the nucleation of gold domain. Further growth of gold domain is a result of reduction of both Au(3+) and Au(+) by HDA at the surface of gold nuclei. We explain the different ability of CoPt(3), Pt, and FePt seeds to serve as a nucleation center for the reduction of gold and further growth of dumbbells. We report that the efficiency and reproducibility of the formation of CoPt(3)/Au, FePt/Au, and Pt/Au dumbbells can be optimized by the concentration and oxidation states of the surface ions on metallic nanocrystals used as seeds as well as by the type of the gold precursor.  相似文献   

6.
The layer-by-layer (LBL) assembly method, combined with the seeded growth technique, have been used to deposit gold shells on the surface of hematite (alpha-Fe(2)O(3)) spindles. While the LBL method yields dense coatings of preformed Au nanoparticles, when AuCl(-)(4) ions are further reduced by a mild reducing agent, thicker, rough nanostructured shells can be grown. The deposition process was monitored by TEM and UV-visible spectroscopy, demonstrating a gradual change in the optical features of the colloids as the surface is more densely covered. The particles so-prepared can find useful applications in cancer therapy and as SERS substrates. Additionally, we show that Au nanorods can be assembled on hematite spindles, providing a flexible way to tune the optical properties of the resulting composite colloids.  相似文献   

7.
Au/Ag核一壳结构复合纳米粒子形成机制的研究   总被引:13,自引:0,他引:13  
纪小会  王连英  袁航  马岚  白玉白  李铁津 《化学学报》2003,61(10):1556-1560
在已制备好的Au纳米粒子表面,通过化学还原的方法沉积生长Ag包覆层,通过 控制Au, Ag的比列,制备了粒度均匀且粒径可控的Au/Ag核-壳结构纳米粒子。利用 UV-vis吸收光谱和透射电子显微镜(TEM)对SAu, Ag摩尔比为1:10的复合纳米粒 子的光学性质和形态进行随时监测,直接观察了核-壳结构纳米粒子的生长过程: 一部分Ag+在Au核表面还原生长,溶液中其余Ag+还原形成银的纳米团簇向粒子表面 的继续沉积生长,壳层增厚。  相似文献   

8.
以金纳米花为种子, 抗坏血酸和硝酸银混合物作为生长溶液制备了Au-Ag纳米花. 当Ag/Au的摩尔比从0增加到0.3时, 银可以在Au种子表面沉积, 得到的Au-Ag纳米花光谱在592~518 nm之间连续可调, 同时纳米花的枝长逐渐减小; 而当Ag/Au摩尔比大于0.3时, 还原的银出现自成核现象. 与Au纳米花相比, Au-Ag纳米花体现出了更好的Raman增强活性.  相似文献   

9.
Multifunctionality of nanotubes (NTs) is essential in biomedical and biotechnological applications, such as drug/gene delivery, bioseparation, and single-molecule detection. Each functionality should be located at optimal positions, depending on their roles such as targeting, tracking, and transporting. This enables avoidance of possible malfunctions or interference caused by having randomly distributed multiple groups (e.g., hydrophobic and hydrophilic) in the same space. In the aspect of multifunctionality, however, a general selective partial functionalization method of NT inner surfaces still remains a challenge. For this reason, we investigated a selective partial functionalization method of NTs using controlled gold nanoparticle (Au NP) diffusion in nanotubes and the preparation method of Au-capped silica nanotubes. Silica nanotubes (SNTs) were prepared using template sol-gel synthesis, and the inside of SNT was selectively modified with (3-trimethoxysilylpropyl) diethylenetriamine (DETA-silane). Au NPs of 2-nm size were then incubated with SNTs with DETA layer inside. Spontaneous diffusion of negatively charged Au NPs from bulk into the positively charged nanochannels of SNTs led trapped Au NPs onto the inner surface of SNTs. The degree of functionalization was controlled by the channel diameter, Au NP concentration, and solvent type. These SNTs partially modified with Au NPs were then used for localized selective chemical functionalization of SNTs. This was accomplished by the reaction between thionylated Au NPs trapped on the inside of SNTs and Alexa555-maleimide. Au-capped SNTs were prepared from SNTs with Au NPs inside by seed-mediated gold growth.  相似文献   

10.
In this paper, for the first time, we introduced the seed-mediated method to the growth of cobalt hexacyanoferrate nanoparticles (CoNPs), using 3.5 nm gold nanoparticles as seeds and multiwalled carbon nanotubes (MWCNTs) as growth scaffold which would both show synergistic action toward the reduction of H2O2. Via gold seeds, the one-step fabrication of CoNPs on the glassy carbon electrode is simple without any linking reagents, which will ingeniously exert the electrochemical properties of cobalt hexacyanoferrate. Combined with glucose oxidase, the sensing surface is applied as a biosensor for glucose. The growth of CoNPs is a chemical deposition process around the small Au nanoseed particles. The nanoseeds bridge the CoNPs and CNTs to form a smart nanocomposite. Spherical CoNPs have a relatively moderate dispersion on the three-dimensional network of CNTs with relatively even diameter ca. 100 nm. Whereas, in the control experiments without gold seeds cobalt hexacyanoferrate can only form continuous films, of which the size is far from nanolevel and the catalytic ability is poor. The synthesis and fabrication/modification of CoNPs are simple and fast without prior preparation of CoNPs and lengthy process of cross-linking. The amount of the seeds and CNTs, growth time and concentration of growth solution were investigated. Scanning electron microscopy (SEM) and electrochemical method were used.  相似文献   

11.
We have studied nickel, gold, and ferritin coatings on catalytically grown multiwall carbon nanotubes as well as the generation of secondary nanotubes by resubmitting the decorated nanotubes to the chemical vapor deposition process. Nickel layers sputtered on nanotubes show a stronger interaction with the nanotube walls than gold coatings. At ambient temperature this results in a metal film that is more homogeneous for Ni than for Au. Surface mass transport at elevated temperatures leads to a transformation of the coating to nanoscale clusters on the nanotube surface. The resulting Au clusters are spherelike with a very small contact area with the nanotube whereas the Ni clusters are stretched along the tube axis and have a large contact area. Secondary nanotubes were established by growing nanotubes directly on the walls of primary nanotubes. Thin Ni layers or ferritin served as catalysts. We compared the field emission properties of samples with and without secondary nanotubes. The presence of secondary nanotubes enhances the field emission substantially.  相似文献   

12.
A direct process for preparing contiguous gold shells (15-25 nm thick) over amorphous silica spheres (200 nm) is described. In this method, gold seeds are synthesized from HAuCl(4) in a dilute NaOH solution using deposition-precipitation with subsequent metallization by sodium borohydride (NaBH(4)). The ease of dispersing gold nanocrystals on spheres of bare silica and spheres after grafting with ammonia was studied as a function of pH (4-8), reaction temperature (65-96 degrees C), and time (5-30 min). Additional parameters requiring optimization included the quantity of NaBH4 and the HAuCl(4) in K(2)CO(3) solution to silica volume ratio. The evolution of gold nanocrystal growth was monitored by transmission electron microscopy, and the bathochromic shift of ultraviolet-visible absorption was correlated with shell perfection and thickness.  相似文献   

13.
One-dimensional gold/polyaniline (Au/PANI-CSA) coaxial nanocables with an average diameter of 50-60 nm and lengths of more than 1 mum were successfully synthesized by reacting aniline monomer with chlorauric acid (HAuCl(4)) through a self-assembly process in the presence of D-camphor-10-sulfonic acid (CSA), which acts as both a dopant and surfactant. It was found that the formation probability and the size of the Au/PANI-CSA nanocables depends on the molar ratio of aniline to HAuCl(4) and the concentration of CSA, respectively. A synergistic growth mechanism was proposed to interpret the formation of the Au/PANI-CSA nanocables. The directly measured conductivity of a single gold/polyaniline nanocable was found to be high (approximately 77.2 S cm(-1)). Hollow PANI-CSA nanotubes, with an average diameter of 50-60 nm, were also obtained successfully by dissolving the Au nanowire core of the Au/PANI-CSA nanocables.  相似文献   

14.
This paper describes the seed-mediated growth of highly aligned gold nanorods (Au NRs) over large areas directly on a Si(100) surface. The Si(100) surface is NH2-functionalized with (aminopropyl)triethoxysilane (APTES) followed by a DCC-catalyzed surface amidation reaction with acetic acid. After exposure to a gold nanoparticle (Au NP) "seed" solution, chemical seed-mediated growth of the surface-bound seeds via reduction of AuCl4- by ascorbic acid in the presence of cetyltrimethylammonium bromide leads to the growth of highly aligned Au NRs on the surface. About 80% of the NRs are aligned in the same direction within a +/-30 degrees range. Au NRs account for 19% of the nanostructures with average aspect ratio (AR) of approximately 20. The alignment direction did not correlate with the atomic arrangement of the Si(100) crystal since it varied over different regions of the sample, rotating by 90 degrees from top to bottom of an approximately 5 mm sample. Si crystallinity may still be important since alignment is not observed on amorphous glass. Surface functionalization is the key since alignment is only observed following the amidation reaction and not on NH2-functionalized, SH-functionalized, or bare Si(100) surfaces. Alignment also occurred for Au NRs grown on Si(100)/APTES reacted with succinic acid and on Ag NRs grown on Si(100)/APTES/acetic acid surfaces. This unique alignment of metal NRs promoted by a surface amidation chemical reaction may find use in nanoelectronics, chemical sensing, and plasmonics applications.  相似文献   

15.
A method is presented for synthesizing core-shell structures consisting of monodisperse polystyrene latex nanospheres as cores and gold nanoparticles as shells. Use of polystyrene spheres as the core in these structures is advantageous because they are readily available commercially in a wide range of sizes, and with dyes or other molecules doped into them. Gold nanoparticles, ranging in size from 1 to 20 nm, are prepared by reduction of a gold precursor with sodium citrate or tetrakis(hydroxymethyl)phosphonium chloride (THPC). Carboxylate-terminated polystyrene spheres are functionalized with 2-aminoethanethiol hydrochloride (AET), which forms a peptide bond with carboxylic acid groups on their surface, resulting in a thiol-terminated surface. Gold nanoparticles then bind to the thiol groups to provide up to about 50% coverage of the surface. These nanoparticles serve as seeds for growth of a continuous gold shell by reduction of additional gold precursor. The shell thickness and roughness can be controlled by the size of the nanoparticle seeds as well as by the process of their growth into a continuous shell. By variation of the relative sizes of the latex core and the thickness of the gold overlayer, the plasmon resonance of the nanoshell can be tuned to specific wavelengths across the visible and infrared range of the electromagnetic spectrum, for applications ranging from the construction of photonic crystals to biophotonics. The position and width of the plasmon resonance extinction peak are well-predicted by extended Mie scattering theory.  相似文献   

16.
Stable anisotropic gold nanoparticles were prepared by the reduction of tetrachloroauric acid with hydrazine in mixed reverse micelles formed with anionic surfactant Aerosol-OT and nonionic surfactant sorbitan monooleate (Span80) in isooctane. It was found that the Span80 serves not only as a structure modifier but also as a stabilizer for Au particles, to prevent their further growth and precipitation. The control of particle size, shape, and degree of dispersion was achieved by varying the process variables, such as molar ratio of reduction agent to metal salt, size of water droplets (omega(o)), concentration of metal salt, and sequence of addition of metal salt into the mixed reverse micelles. When the HAuCl(4) was injected directly into the mixed reversed micelles containing hydrazine, nonspherical gold nanoparticles, such as rods and cubes, were obtained at the molar ratio of hydrazine to HAuCl(4) of less than 1.0. The nonspherical Au particles were preferably formed at larger omega(o) value and lower gold salt loading. By the analyses of high-resolution electron microscope, electron diffraction pattern, and energy-dispersive X-ray analysis (EDX), the resultant particles have been found to be pure gold of face-centered cubic structure. Copyright 2000 Academic Press.  相似文献   

17.
采用自下而上方法制备了金-介孔二氧化硅复合纳米管,其中金纳米粒子作为催化剂嵌在介孔二氧化硅纳米管管壁内侧。金纳米颗粒的团聚、脱落和晶粒尺寸生长都可以被有效限制,而且催化剂负载量和尺寸大小均可实现简单控制。管壁中的介孔孔道、纳米管末端开口以及一维中空管道可以协同促进反应物扩散,从而提高4-硝基苯酚还原反应活性。循环实验证明这种复合纳米管催化剂具有良好的可重复使用性,而且在反应过程中未出现金纳米粒子脱落或团聚现象。  相似文献   

18.
The aerobic oxidation of methanol to formic acid catalyzed by Au(20)(-) has been investigated quantum chemically using density functional theory with the M06 functional. Possible reaction pathways are examined taking account of full structure relaxation of the Au(20)(-) cluster. The proposed reaction mechanism consists of three elementary steps: (1) formation of formaldehyde from methoxy species activated by a superoxo-like anion on the gold cluster; (2) nucleophilic addition by the hydroxyl group of a hydroperoxyl-like complex to formaldehyde resulting in a hemiacetal intermediate; and (3) formation of formic acid by hydrogen transfer from the hemiacetal intermediate to atomic oxygen attached to the gold cluster. A comparison of the computed energetics of various elementary steps indicates that C-H bond dissociation of the methoxy species leading to formation of formaldehyde is the rate-determining step. A possible reaction pathway involving single-step hydrogen abstraction, a concerted mechanism, is also discussed. The stabilities of reactants, intermediates and transition state structures are governed by the coordination number of the gold atoms, charge distribution, cooperative effect and structural distortion, which are the key parameters for understanding the relationship between the structure of the gold cluster and catalytic activity in the aerobic oxidation of alcohols.  相似文献   

19.
The galvanic replacement reaction between silver and chloroauric acid has been exploited as a powerful means for preparing metal nanostructures with hollow interiors. Here, the utility of this approach is further extended to produce complex core/shell nanostructures made of metals by combining the replacement reaction with electroless deposition of silver. We have fabricated nanorattles consisting of Au/Ag alloy cores and Au/Ag alloy shells by starting with Au/Ag alloy colloids as the initial template. We have also prepared multiple-walled nanoshells/nanotubes (or nanoscale Matrioshka) with a variety of shapes, compositions, and structures by controlling the morphology of the template and the precursor salt used in each step of the replacement reaction. There are a number of interesting optical features associated with these new core/shell metal nanostructures. For example, nanorattles made of Au/Ag alloys displayed two well-separated extinction peaks, a feature similar to that of gold or silver nanorods. The peak at approximately 510 nm could be attributed to the Au/Ag alloy cores, while the other peak was associated with the Au/Ag alloy shells and could be continuously tuned in the spectral range from red to near-infrared.  相似文献   

20.
A hybrid preparative method was developed to prepare organosulfur-functionalized Au nanoparticles (NPs) on silicon nanowires (SiNWs) by reacting HAuCl(4) with SiNW in the presence of thiol. A number of organosulfur molecules-dodecanethiol, hexanethiol, 1,6-hexanedithiol, and tiopronin-were used to functionalize the Au surface. Size-selected NPs ranging from 1.6 to 7.5 nm were obtained by varying the S/Au ratio and the concentration of HAuCl(4). This method was further extended to the preparation Pd and Pd-Au bimetallic NPs on SiNWs. The morphology of the metal nanostructures was examined by transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The local structure and bonding of the SiNW-supported metal nanostructures were studied using X-ray absorption fine structures (XAFS) [including both X-ray near-edge structures (XANES) and extended X-ray absorption fine structures (EXAFS)] at the Au L(3)-, Pd K-, S K-, and Si K-edges. It was also found that the annealing of the thiol-capped Au NPs up to 500 degrees C transforms the surface of the thiol-capped NPs to gold sulfide, as identified using Au L(3)- and S K-edge XANES. We also illustrate that this preparative approach can be used to form size-controllable Au NPs on carbon nanotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号