首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Attempt has been made to deposit diamond like carbon (DLC) films from ethanol through electrodeposition at low voltages (80-300 V) at 1 mm interelectrode separation. The films were characterized by atomic force microscopy (AFM), Scanning electron microscopy (SEM), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy and Auger electron Spectroscopy (AES). AFM investigations revealed the grain sizes are of tens of nanometers. The films were found to be continuous, smooth and close packed. Presence of peaks at 2958, 2929 and 2869 cm−1 in FTIR spectrum indicates the bonding states to be of predominantly sp3 type (C-H). Raman spectroscopy analysis revealed two broad bands at ∼1350 and ∼1570 cm−1. The downshift of the G-band of graphite is indicative of presence of DLC. Analysis of the Raman spectra for the samples revealed an improvement in the film quality with increase in the voltage. Micro Raman investigations indicate the formation of diamond phase at the deposition potential of 80 V. The sp2 contents the films calculated from Auger electron spectra were calculated and were found to be 31, 19 and 7.8% for the samples prepared at 80, 150 and 300 V, respectively. A tentative mechanism for the formation of DLC has been proposed. These results indicate the possibility of deposition of DLC at low voltage.  相似文献   

2.
采用原子力显微镜(AFM)、俄歇电子能谱(AES)和显微压痕分析等手段对射频等离子体增强化学气相沉积法制备的掺氮类金刚石(DLC:N)薄膜的微观结构和力学性能进行了研究.结果表明,随着含氮量的增加,DLC薄膜的AFM表面形貌中出现了几十纳米的颗粒,原子侧向力显微镜和AES分析表明这种纳米颗粒是x大于0.126的非晶氮化碳CNx结构.这种非晶DLC/CNx的纳米复合结构,减小了薄膜的内应力,从而提高了薄膜与衬底的附着力. 关键词: 类金刚石碳膜 微观结构 附着特性  相似文献   

3.
《Current Applied Physics》2010,10(2):498-502
Among the available surface analytic instruments, elastic recoil detection (ERD) is known as a reliable method for hydrogen analysis. Since conventional fluence determination i.e. beam current integration is incredible at a large tilt angle, ion fluence is determined by the scattering spectrum that is simultaneously measured with recoil spectrum. However scattering cross sections deviate Rutherford values in the ERD energy of 1–3 MeV. Carbon scattering cross section is different from Rutherford value for higher beam energies over 1.8 MeV. As a result hydrogen content is exaggerated when fluence is determined by carbon matrix because of fluence underestimation due to lower value of scattering cross section than Rutherford’s. Therefore in order to quantify hydrogen in diamond like carbon (DLC) incident beam energy lower than 1.6 MeV should be used where carbon scattering cross sections are well agreed with Rutherford’s.  相似文献   

4.
In present study diamond like carbon (DLC) films were deposited by closed drift ion source from the acetylene gas. The electrical and piezoresistive properties of ion beam synthesized DLC films were investigated. Diode-like current–voltage characteristics were observed both for DLC/nSi and DLC/pSi heterostructures. This fact was explained by high density of the irradiation-induced defects at the DLC/Si interface. Ohmic conductivity was observed for DLC/nSi heterostructure and metal/DLC/metal structure at low electric fields. At higher electric fields forward current transport was explained by Schottky emission and Poole–Frenkel emission for the DLC/nSi heterostructures and by Schottky emission and/or space charge limited currents for the DLC/pSi heterostructures. Strong dependence of the diamond like carbon film resistivity on temperature has been observed. Variable range hopping current transport mechanism at low electric field was revealed. Diamond like carbon piezoresistive elements with a gauge factor in 12–19 range were fabricated.  相似文献   

5.
Thin nanocrystalline diamond/amorphous carbon (NCD/a-C) composite films and amorphous diamond-like carbon (DLC) films were prepared by three methods: microwave plasma chemical vapour deposition (MWCVD) from methane/nitrogen mixtures (NCD/a-C), RF magnetron sputtering of a pure graphite target in argon/methane ambients, and pulsed laser deposition (PLD) in vacuum or argon atmosphere (DLC). The films prepared by the three techniques were comprehensively characterized with respect to their bonding structure by Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). PACS 81.05.Uw; 82.80.Pv  相似文献   

6.
With the increase of magnetic storage density, the thickness of the protective diamond like carbon (DLC) film on the surfaces of head and disk is required as thin as possible. In this paper, the structure, mechanical properties and corrosion and oxidation resistance of ultra-thin DLC films are investigated. The ultra-thin DLC films were deposited by using filtered cathodic vacuum arc (FCVA) technique. The exact thickness of the ultra-thin DLC film was determined by high resolution transmission electron microscope (HRTEM). Raman analysis indicates that the ultra-thin DLC film presents ta-C structure with high sp3 fraction. In the wear test, a diamond tip was used to simulate a single-asperity contact with the film surface and the wear marks were produced on the film surface. The wear depths decrease with film thickness increasing. If the film thickness was 1.4 nm or above, the wear depth was much lower than that of Si substrate. This indicates that the ultra-thin DLC film with thickness of 1.4 nm shows excellent wear resistance. Corrosion tests in water and oxidation tests in air were carried out to investigate the diffusion barrier effect of the ultra-thin DLC films. The results show that the DLC film with thickness of 1.4 nm provides adequate coverage on the substrate and has good corrosion and oxidation resistance.  相似文献   

7.
类金刚石薄膜激光损伤阈值低,已经严重制约其在红外激光系统中的应用。基于非平衡磁控溅射技术,在硅基底上沉积类金刚石薄膜;采用离子束流后处理技术,用正交实验法确定影响处理效果的主要因素,对已沉积完成的DLC薄膜进行离子束轰击;在不同处理工艺下,观测薄膜样品的光学常数及拉曼光谱,最后进行了激光损伤测试。从测试结果可知,离子束流后处理参数:离子能量1000eV、放电电流30~40mA、轰击时间8min时,透射率由原来的60.65%提高到了65.98%;消光系数在900nm后明显降低,DLC薄膜的激光损伤阈值从0.69J/cm2提高到1.01J/cm2。  相似文献   

8.
A new method to calibrate the binding energy (EB) using Au nanocolloids as a calibrant in XPS analysis of diamondlike carbon (DLC) is proposed by considering the DLC films with different electrical resistivities. A few microliters of a dilute aqueous solution containing Au nanocolloids were dropped onto a small local surface area of the DLC film, which became a stain before XPS measurements by gradually drying in vacuo. The observed peak EB of the C 1s spectrum at another native surface (an area without Au nanocolloids) of the DLC film was calibrated by setting that of the Au 4f7/2 spectrum of the Au nanocolloids to 84.0 (83.98 ± 0.02) eV. The adequacy of this method was investigated by considering the correlation among the full width at half maximums (FWHMs) of the Au 4f7/2 spectra of the Au nanocolloids on the DLC surfaces and that of a Au plate as a reference. Consequently, the FWHM of the Au 4f7/2 spectrum of the Au nanocolloids on the DLC surface is a candidate to investigate the differential charging effect of the DLC surface, and the calibration method is reliable if the FWHM agrees with that of the Au plate.  相似文献   

9.
The electronic structure and vibrational spectrum of the C60 film condensed on a 2H- MoS2(0001) surface have been investigated by X-ray photoelectron spectroscopy (XPS), ul-traviolet photoelectron spectroscopy (UPS), Auger electron spectroscopy (AES) and infrared high-resolution electron-energy-loss spectroscopy (HREELS). AES analysis showed that at low energy side of the main transition, C60 contains a total of three peaks just like that of graphite. However, the energy position of the KLL main Auger transition of C60 looks like that of diamond, indicating that the hybridization of the carbon atoms in C60 is not strictly in sp2- bonded state but that the curvature of the molecular surface introduces some sp2pz- bonded character into the molecular orbitals. XPS showed that the C 1s binding energy in C60 was 285.0eV, and its main line was very symmetric and offered no indication of more than a single carbon species. In UPS measurement the valence band spectrum of C60 within 10eV below the Fermi level (EF) shows a very distinct five-band structure that character-izes the electronic structure of the C60 molecule. HREEL results showed that the spectrum obtained from the C60 film has very rich vibrational structure. At least, four distinct main loss peaks can be identified below 200 meV. The most intense loss was recorded at 66 meV, and relatively less intense losses were recorded at 95, 164 and 197meV at a primary energy of electron beam EP = 2.0eV. The other energy-loss peaks at 46, 136, 157 and 186meV in HREEL spectrum are rather weak. These results have been compared to infrared spectrum data of the crystalline solid C60 taken from recent literatures.  相似文献   

10.
Amorphous diamond like carbon (DLC) and titanium incorporated diamond like carbon (Ti-DLC) thin films were deposited by using reactive-biased target ion beam deposition method. The effects of Ti incorporation and target bias voltage on the microstructure and mechanical properties of the as-deposited films were investigated by means of X-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy and nano-indentation. It was found that the Ti content in Ti-DLC films gets increased with increasing target bias voltage. At about 4.2 at.% of Ti, uniform sized well dispersed nanocrystals were seen in the DLC matrix. Using FFT analysis, a facility available in the TEM, it was found that the nanocrystals are in cubic TiC phase. Though at the core, the incorporated Ti atoms react with carbon to form cubic TiC; most of the surface exposed Ti atoms were found to react with the atmospheric oxygen to form weakly bonded Ti-O. The presence of TiC nanocrystals greatly modified the sp3/sp2 hybridized bonding ratio and is reflected in mechanical hardness of Ti-DLC films. These films were then tested for their biocompatibility by an invitro cell culturing test. Morphological observation and the cell proliferation test have demonstrated that the human osteoblast cells well attach and proliferate on the surface of Ti incorporated DLC films, suggesting possible applications in bone related implant coatings.  相似文献   

11.
杨莉  王正铎  张受业  杨丽珍  陈强 《中国物理 B》2009,18(12):5401-5405
To reduce the oxygen transmission rate through a polyethylene terephthalate (PET) bottle (an organic plastic) diamond-like carbon (DLC) coatings on the inner surface of the PET bottle were deposited by radio frequency plasma-enhanced chemical vapour deposition (RF-PECVD) technology with C2H2 as the source of carbon and Ar as the diluted gas. As the barrier layer to humidity and gas permeation, this paper analyses the DLC film structure, composition, morphology and barrier properties by Fourier transform infrared, atomic force microscopy, scanning electron microscopy and oxygen transmission rate in detail. From the spectrum, it is found that the DLC film mainly consists of sp3 bonds. The barrier property of the films is significantly relevant to the sp3 bond concentration in the coating, the film thickness and morphology. Additionally, it is found that DLC film deposited in an inductively coupled plasma enhanced capacitively coupled plasma source shows a compact, homogeneous and crack-free surface, which is beneficial for a good gas barrier property in PET bottles.  相似文献   

12.
This paper reports the effect of positive substrate bias (Vs) varying from 0 to 180 V on the spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS) and X-ray Auger electron spectroscopy (XAES) studies of diamond-like carbon (DLC) films deposited using CH4 gas as a feedstock into a saddle field fast atom beam (FAB) source. The values of optical constants like refractive index (n) and extinction coefficient (k) of the deposited DLC films were determined using a two phase model. The values of ‘n’ were found to fall in the range from 1.505 to 1.720 and ‘k’ from 0.03 to 0.125 by application of different values of Vs. Value of these optical constants were found to decrease with the increase of substrate bias up to 90 V and then increase beyond this value. Position of C 1s peak evaluated from XPS data was found to occur at 286.09±0.18 eV in DLC films deposited by application of different values of Vs. Observation of full width at half maximum (FWHM) (τ) value (1.928 eV at Vs=0 V, 2.0 eV at Vs=90 V and 1.89 eV at Vs=180 V) clearly hinted the existence of a point of inflection in the properties of DLC films deposited using FAB source this way. A parameter ‘D’ defined as the distance between the maximum of positive going excursion and the minimum of negative going excursion was calculated in the derivative XAES spectra. The values of ‘D’ evaluated from XAES data for DLC films were found to be 14.8, 14.5 and 15.2 at Vs=0, 90 and 180 V, respectively. The sp2 percentage was calculated for samples deposited this way and was found to be low and lie approximately at 5.6, 2.8, 2.3, 5.7 and 11.5 for different values of Vs=0, 50, 90, 150 and 180 V. The sp3 content percentage and sp3/sp2 ratio was found to be 94.4 and 16.7, 97.7 and 42.5 at Vs=0 and 90 V, respectively. Beyond Vs=90 V these values started decreasing. Mainly, a point of inflection in all the properties of DLC films studied over here at around 90 V of applied substrate bias has been observed, which has been explained on the basis of existing theories in the literature.  相似文献   

13.
Diamond-like carbon(DLC) thin film is one of the most widely used optical thin films.The fraction of chemical bondings has a great influence on the properties of the DLC film.In this work,DLC thin films are prepared by ion-beam sputtering deposition in Ar and CH4 mixtures with graphite as the target.The influences of the ion-beam voltage on the surface morphology,chemical structure,mechanical and infrared optical properties of the DLC films are investigated by atomic force microscopy(AFM),Raman spectroscopy,nanoindentation,and Fourier transform infrared(FTIR) spectroscopy,respectively.The results show that the surface of the film is uniform and smooth.The film contains sp2 and sp3hybridized carbon bondings.The film prepared by lower ion beam voltage has a higher sp3 bonding content.It is found that the hardness of DLC films increases with reducing ion-beam voltage,which can be attributed to an increase in the fraction of sp3 carbon bondings in the DLC film.The optical constants can be obtained by the whole infrared optical spectrum fitting with the transmittance spectrum.The refractive index increases with the decrease of the ion-beam voltage,while the extinction coefficient decreases.  相似文献   

14.
张培增  李瑞山  谢二庆  杨华  王璇  王涛  冯有才 《物理学报》2012,61(8):88101-088101
采用液相电化学沉积技术制备了ZnO纳米颗粒掺杂的类金刚石(DLC)薄膜, 研究了ZnO纳米颗粒掺杂对DLC薄膜场发射性能的影响. 利用X射线光电子能谱、透射电子显微镜、Raman光谱以及原子力显微镜分别对薄膜的化学组成、 微观结构和表面形貌进行了表征. 结果表明: 薄膜中的ZnO纳米颗粒具有纤锌矿结构, 其含量随着电解液中Zn源的增加而增加. ZnO纳米颗粒掺杂增强了DLC薄膜的石墨化和表面粗糙度. 场发射测试表明, ZnO纳米颗粒掺杂能提高DLC薄膜的场发射性能, 其中Zn与Zn+C的原子比为10.3%的样品在外加电场强度为20.7 V/μm时电流密度达到了1 mA/cm2. 薄膜场发射性能的提高归因于ZnO掺杂引起的表面粗糙度和DLC薄膜石墨化程度的增加.  相似文献   

15.
The electronic structure and vibrational spectrum of the C60 film condensed on a 2H- MoS2(0001) surface have been investigated by X-ray photoelectron spectroscopy (XPS), ul-traviolet photoelectron spectroscopy (UPS), Auger electron spectroscopy (AES) and infrared high-resolution electron-energy-loss spectroscopy (HREELS). AES analysis showed that at low energy side of the main transition, C60 contains a total of three peaks just like that of graphite. However, the energy position of the KLL main Auger transition of C60 looks like that of diamond, indicating that the hybridization of the carbon atoms in C60 is not strictly in sp2- bonded state but that the curvature of the molecular surface introduces some sp2pz- bonded character into the molecular orbitals. XPS showed that the C 1s binding energy in C60 was 285.0eV, and its main line was very symmetric and offered no indication of more than a single carbon species. In UPS measurement the valence band spectrum of C60 within 10eV below the Fermi level (EF) shows a very distinct five-band structure that character-izes the electronic structure of the C60 molecule. HREEL results showed that the spectrum obtained from the C60 film has very rich vibrational structure. At least, four distinct main loss peaks can be identified below 200 meV. The most intense loss was recorded at 66 meV, and relatively less intense losses were recorded at 95, 164 and 197meV at a primary energy of electron beam EP = 2.0eV. The other energy-loss peaks at 46, 136, 157 and 186meV in HREEL spectrum are rather weak. These results have been compared to infrared spectrum data of the crystalline solid C60 taken from recent literatures.  相似文献   

16.
A novel hybrid technique for diamond-like carbon (DLC) film deposition has been developed. This technique combines the electron cyclotron resonance chemical vapor deposition (ECRCVD) of C2H2 and metallic magnetron sputtering. Here we described how DLC film is used for a variety of applications such as stamper, PCB micro-tools, and threading form-tools by taking advantage of hybrid ECRCVD system. The structure of the DLC films is delineated by a function of bias voltages by Raman spectroscopy. This function includes parameters such as dependence of G peak positions and the intensity ratio (ID/IG). Atomic force microscope (AFM) examines the root-mean-square (R.M.S.) roughness and the surface morphology. Excellent adhesion and lower friction coefficients of a DLC film were also assessed.  相似文献   

17.
《Surface science》1986,165(1):83-142
Experimental studies of the diamond surface with primary emphasis on the (111) surface are presented. Aspects of the diamond surface which are addressed include (1) the electronic structure, (2) the atomic structure, and (3) the effect of termination of the lattice by foreign atoms. Limited studies of graphite are discussed for comparison with the diamond results. Experimental results from valence band and core level photoemission spectroscopy (PES), Auger electron spectroscopy (AES), and low energy electron diffraction (LEED) are used to study and characterize both the clean and hydrogenated surface. In addition, the interaction of hydrogen with the diamond surface is examined using results from vibrational high resolution low energy electron loss spectroscopy and photon stimulated ion desorption (PSID) yield at photon energies just above the carbon k-edge. Both EELS and PSID verify that the mechanically polished 1 × 1 surface is hydrogen terminated and also that the reconstructed 2×2/2×1 surface is hydrogen free. We apply this basic knowledge of the clean diamond surface and of diamond-hydrogen systematics to understanding of the fundamental growth characteristics of diamond films.  相似文献   

18.
We have used Auger electron spectroscopy (AES) to investigate the effect of electron beam exposure on growth modes of fullerene (C60) on substrates like Ag and hydrogen-passivated Si(1 1 1). The electron beam comprises of 3.4 keV electrons, which are used in the AES study. To investigate the effect, Auger signal (AS) vs. deposition time (t) measurements were conducted in a sequential mode, i.e., alternating deposition of C60 and analysis using the electron beam. Duration of AES data collection after each deposition was the duration of exposure to electron beam in this experiment. For the growth study of C60 on Ag, three AS-t plots were recorded for three different durations of exposure to electron beam. Changes in the AS-t plot, depending on the duration of exposure to the electron beam, reflect the electron beam-induced damage. Electron beam-induced damages of C60 produce carbon materials of different densities and consequently transmission coefficient (α) of Auger electron through this material changes. In order to fit the AES (AS vs. t) data a model has been used which simultaneously provides the growth mode and the transmission coefficient. Observation of an increasing transmission coefficient with the increasing duration of exposure to the electron beam from α=0.34 to 0.60 indicates the change of the nature of the carbon material due to the partial damage of C60.  相似文献   

19.
非平衡磁控溅射法类金刚石薄膜的制备及分析   总被引:4,自引:0,他引:4       下载免费PDF全文
利用非平衡磁控溅射物理气相沉积技术制备了光滑、致密、均匀的类金刚石薄膜.分析沉积工艺参数对所得类金刚石薄膜的电学特性的影响以及溅射粒子的大小、能量、碰撞及沉积过程中的相变机理后认为:溅射粒子越小、与环境气体分子的碰撞次数越多、与衬底相互作用时具有适当动量等,能够有效提高薄膜中sp杂化碳原子的含量.利用拉曼光谱 、纳米力学探针、红外光谱、扫描电镜等分析了所得类金刚石膜的结构、力学及光学性能、 表面形貌等特征.结果表明,类金刚石膜中sp杂化碳原子的含量较高,显微硬 度大于11GPa,薄膜光学透过率达到89.4%,折射系数为1.952,沉积速率为0.724μm/h,表 面光滑、致密、均匀,不存在明显的晶粒特征. 关键词: 非平衡磁控溅射 类金刚石膜 拉曼光谱 红外光谱  相似文献   

20.
Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to −200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp3 carbon content and mechanical properties of the deposited DLC films. A maximum sp3 content of 33.3% was obtained at −100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号