首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The superconducting transition temperature Tc of LaSn3 has been measured up to ~ 22 kbar and was observed to increase through a maximum under hydrostatic compression. The anomalous Tc-behavior is attributed to a pressure induced Fermi surface topology change.  相似文献   

3.
《Physica B+C》1988,147(2-3):175-180
In this paper a model to describe the free carrier-bipolaron interacting system is proposed. Effective hopping of the bipolaron is studied in the slave-boson approach, and a characteristic temperature T1 is obtained, below which the system enters a coherent state. The density of states in the normal state and the superconductivity of the system are discussed in a quasiparticle picture. The results show that the mixing between the free carrier and the bipolaron results in an enhancement of the effective mass of the quasiparticle and meanwhile the renormalized coupling interaction, arising from the negative correlation energy in the bipolaron region, enhances the effective superconducting coupling interaction. Under the most favourable conditions, the superconducting transition temperature Tc ∼ ωc, where ωc is the Debye frequency related with local electron-phonon coupling. In general we have T1 > TcTc0 (Tc0 is the superconducting transition temperature of a usual superconductor). Therefore the system will firstly enter a coherent state before becoming a high-Tc superconductor.  相似文献   

4.
The superconducting transition temperature (Tc) and the temperature dependence of the normal state resistivity of the Ti1?xSbx system between Tc and 300 K have been studied. The Tc values are found to depend on the heat treatment of the samples. Below 40 K, all alloys show a T2 dependence of the resistivity. However, the sample with x = 0.53 is not superconducting and shows a different behaviour of the resistivity.  相似文献   

5.
We have used guided optical waves to locally illuminate superconducting thin lead strips and measured the critical current as a function of optical power. The measured results resemble the predictions of a simple heating model more closely than the Parker T1 model in the temperature range investigated (5.5 K to Tc) and several possible reasons for this behavior are discussed.  相似文献   

6.
The electrical resistivity and the thermopower are measured on the single phase superconductor Ba2YCu3O9-δ (δ=2.1). The results indicate that the temperature dependences of the resistance and thermopower exhibit typical metallic behaviour, and the sample conducts via electrons at high temperatures. The behaviour of the thermopower can be described with Mott's semi-classical model. The specific heat of electrons in normal state has been estimated 780mJ/K·mole at 200K, i.e. γ=3.9mJ/K2·mole. Unusual phonon-drag effect is observed above the superconducting transition temperature Tc. Below Tc, the electrical resistivity and the thermopower all drop to zero corresponding to a superconducting ground state.  相似文献   

7.
Current pulses larger than the critical current Ic are passed through narrow superconducting aluminium strips. The time delay between the start of the pulse and the onset of the voltage response is measured as a function of current amplitude for various temperatures (0.84<T/Tc<0.98). We find the delay time to be dependent on the temperature as (1 - T/Tc)α with α changing from a value of - 0.5 for I/Ic close to 1 to a value of - 1.0 for I/Ic larger than 3.  相似文献   

8.
We have studied the pressure dependence of the superconducting transition temperature of amorphous (Mo0.6Ru0.4)86B14 for hydrostatic pressures up to P ~ 9 kbar. The transition temperature Tc decreases with pressure at a rate dTc/dP=-(9±1) mK kbar-1. We estimate the Grüneisen parameter and the volume dependence of the electron-phonon coupling constant.  相似文献   

9.
Investigations of the pressure dependence of the superconducting transition temperature Tc up to 17 kbar, and of the normal conductivity up to 50 kbar are reported. It is observed that below 8 kbar, the value of Tc increases linearly with the pressure. In addition, there is a significant drop of Tc at about 9 kbar which may be due to a phase transition.  相似文献   

10.
The superconducting transition temperature T c of the ZrD0.48 alloy is measured in the pressure range up to 41.5 GPa. The measurements are carried out in a high-pressure chamber with diamond anvils by the inductometric method. It is found that T c(P) increases to 3.1 K at a pressure below 30 GPa, exhibits a sharp increase up to 8 K near 30 GPa, and then smoothly decreases to ~6.5 K at 41.5 GPa. A similar dependence T c(P) is obtained for pure Zr. The similarity of the T c(P) curves suggests that the dependence T c(P) observed for ZrD0.48 is due to the presence of ω-phase in this alloy at pressures P<30 GPa and the ω-β transition at P≈30 GPa, which leads to the establishment of new ratios between the phases in the Zr-D system. In the pressure range studied, no indications are observed for new superconducting phases similar to the phases of intermediate composition in the Ti-H(D) system, which are formed by the hydrogen transfer from tetrahedral to octahedral interstitials.  相似文献   

11.
Measurements of the pressure (P) dependence of the superconducting transition temperature Tc of stage-two KHgC8 are reported. Tc is found to decrease with applied pressure from a room pressure value of 1.85K at a rate dTc/dP=-6.5 × 10-5K/bar, similar to typical superconducting elements such as Sn. No superconductivity was detected for stage-one KHgC4 or K0.5Hg0.5 amalgam to a limiting temperature T = 1.3K and a limiting pressure P = 22 kbar. These results are discussed in reference to the possible occurence of structural and charge density wave transitions in these materials and recent theoretical models of superconducting graphire intercalation compounds.  相似文献   

12.
The superconducting transition temperatures (Tc) of CuRh2Se4, CuRh2S4 and LiTi2O4 were all found to increase linearly under hydrostatic pressure up to 22 kbar, at a rate of 1–5 × 10-5 Kbar-1. These results are discussed in terms of the dependence of Tc on Debye temperature previously found for this set of compounds from heat capacity measurements at zero pressure.  相似文献   

13.
The behavior of the electrical resistivity ρ(T), the superconducting transition temperature T c , and the upper critical field H c2(T) of a polycrystalline sample of YNi2B2C irradiated by thermal neutrons with the subsequent high-temperature isochronous annealing in the temperature interval T ann = 100–1000°C has been studied. It has been found that the irradiation of YNi2B2C with a fluence of 1019cm?2 leads to the suppression of the superconductivity. The final disordered state is reversible; i.e., the initial ρ(T), T c , and H c2(T) values are almost completely recovered upon annealing at up to T ann = 1000°C. The quadratic dependence ρ(T) = ρ0 + a 2 T 2 is observed for the sample in the superconducting state (T c = 5.5?14.5 K). The coefficient a 2 (proportional to the square of the electron mass m*) hardly changes. The form of the dependence of T c on ρ0 can be interpreted as the suppression of the two superconducting gaps, Δ1 and Δ21 ~ 2Δ2). The degradation rate of Δ1 is about three times higher than that of Δ2. The dependences dH c2/dT on ρ0 and T c may be described by the relations for a superconductor in the intermediate limit (the coherence length ζ0 is on the order of the electron mean free path l tr) under the assumption of a nearly constant electron density of states on the Fermi level N(E F). The observed behavior of T c obviously does not agree with the widespread opinion about the purely electron-phonon mechanism of superconductivity in the compounds of this type supposing the anomalous type of superconducting pairing.  相似文献   

14.
The resistance R, the superconducting transition temperature Tc and the energy gap Δ(T) have been measured on the BaPb0.7Bi0.3O3 films up to 14 kbar. We have found that up to 14 kbar: (1) pressure suppresses Tc and Δ(T) while enhances R, (2) the value of 2Δ(0)/kTc is 3.8±0.1, independent of pressure, and (3) the Δ(T)/Δ(0) varies with T/Tc in a BCS fashion but only for T/Tc<0.75 and independent of pressure. The results show that BaPb1?xBixO3 is a weak-coupling superconductor, but fail to provide information about the cause for the high Tc of the compound.  相似文献   

15.
The properties of Be films, quench-condensed upon a3He cooled substrate, have been investigated by resistance and tunneling measurements. The superconducting transition temperature,T c , of Be films increased with thickness and a thick film limit of 9.95 K could be estimated. Alloying with Al or Pb decreasedT c. The ratios between energy gaps andT c 's indicated that Be is a weak coupling superconductor, and no phonon induced structure could be traced in tunneling curves neither in pure Be nor in the Be based alloys. Resistance change during annealing as well as superconducting data indicated that the vapour quenched Be films were amorphous as deposited.  相似文献   

16.
The specific heat of single phase YBa2Cu3O7-δ has been measured using non-adiabatic method between 4.2K and 120K. There is a specific heat anomaly Δc at 90K (about 3.2% of total specific heat) approximately, due to superconducting transition. From the measured value of ΔC and transition temperature Tc, the electronic density of state at Fermi level N(EF) and Sommerfeld parameter γ calculated are 2.55±0.30states/eV.Cu-atom and 2.77±0.30 mJ/mole.K2, respectively. The experimental result of N(EF) is consistent with that of the band calculation by Mattheiss. The Debye temperature above Tc in this material deduced from Debye function is about 340K. Below 20K, the relation C=γ'T+βT3 is satisfied. But the value of γ' is smaller. That means, most of the electrons have formed superconducting Cooper pairs which give no contribution to specific heat below 20K.  相似文献   

17.
Amorphous Zr-Rh alloys produced by melt spinning have a higher superconducting transition temperature Tc than materials generated by r.f. cosputtering techniques. However, the temperature dependence of the upper critical field Hc2(T is consistent with the GLAG theory for both materials. The Tc differences, as well as variations in the electronic density of states, can be partially understood in terms of slight differences in the average density, perhaps due to the inclusion of Ar gas during sputtering.  相似文献   

18.
An analysis is made of characteristics of the superconducting state (s-and d-pairing) using a simple, exactly solvable model of the pseudogap state produced by fluctuations of the short-range order (such as antiferromagnetic) based on a Fermi surface model with “hot” sections. It is shown that the superconducting gap averaged over these fluctuations is nonzero at temperatures higher than the mean-field superconducting transition temperature T c over the entire sample. At temperatures T > T c superconductivity evidently exists in isolated sections (“ drops”). Studies are made of the spectral density and the density of states in which superconducting characteristics exist in the range T > T c however, in this sense the temperature T = T c itself is no different in any way. These anomalies show qualitative agreement with various experiments using underdoped high-temperature superconducting cuprates.  相似文献   

19.
In the superconducting state of La1?cCecAl2 alloys 139La spin-lattice relaxation times T1s for relatively high c were found to agree with theory based on weak exchange coupling between conduction electrons and paramagnetic impurities. But for a dilute specimen the measured values of T1s are significantly longer than expected. These results are tentatively attributed to the existence of a localized impurity band within the superconducting energy gap.  相似文献   

20.
Nuclear relaxation of 63Cu in the superconducting state of the Kondo-lattice system CeCu2Si2 has been studied with the use of the 63Cu nuclear quadrupole resonance technique under zero field and down to 65mK. The nuclear spin-lattice relaxation rate (1/T1) decreases drastically just below Tc=0.67 K down to 0.5Tc without the apparent enchanced behavior and then is found to be almost temperature independent below 0.3Tc. These results suggest that the superconductivity in CeCu2Si2 is not in the usual BCS regime. The analysis based upon the existing triplet pairing model with an anisotropic energy gap describes well the behavior from Tc down to 0.5Tc, while the temperature independence below 0.3Tc remains unexplained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号