首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influences of boron addition on the phase formation, Curie temperature and magnetic entropy change of the NaZn13-type La(Fe0.9Si0.1)13 compound have been investigated. Eight boron containing La(Fe0.9Si0.1)13Bx samples were prepared with x=0, 0.03, 0.06, 0.1, 0.2, 0.3, 0.5 and 0.6, respectively. Experimental results show that a small amount of B addition in La(Fe0.9Si0.1)13 forms the solid solution NaZn13-type structure phase by substituting B for Si or doping B into interstitial position of the lattice, preserves its giant magnetocaloric effects due to their first-order structural/magnetic transition, as well as increase its Curie temperature Tc slightly. The maximum magnetic entropy changes in the magnetic field change of 0–1.6 T are around 20 J kg–1 K–1 for the samples with Boron addition less than 0.3, while improving the Curie temperatures by 2 K.  相似文献   

2.
The orthorhombic Tb(Ni, Cu)2 and Gd(Ni, Cu)2 systems (CeCu2 structure) are closely similar according to electrical resistivity and magnetic results. The Tb(NixCu1?x)2 system presents a transition from antiferromagnetism (AF) for x ? 8% Ni to ferromagnetism (FM) for x > 8% Ni. The CeCu2 structure becomes unstable for x > 45% Ni. The AF samples show metamagnetism at 4.2 K with critical fields. Hysteresis, which occurs for all samples at 4.2 K, is attributed to intrinsic pinning due to large anisotropy where the mechanism for the AF range is analogous to intrinsic pinning of narrow domain walls in FM samples.Spin disorder resistivity measurements show a discontinuity at the AF-FM transition composition for both the Tb and Gd systems. This is due to a step up of the residual resistivity at 4.2 K as a result of AF ordering. This interpretation is confirmed by applying a magnetic field to destroy the AF ordering.  相似文献   

3.
The magnetic properties of the La(Fe0.873Co0.007Al0.12)13 intermetallic compound have been studied. The compound is a cluster antiferromagnet showing the metamagnetic transition. The magnetic phase diagram of the compound has been constructed. The temperature dependence of the inverse paramagnetic susceptibility of La(Fe0.873Co0.007Al0.12)13 obeys the Curie–Weiss law. The large positive paramagnetic Curie point indicates the presence of predominantly ferromagnetic exchange interactions. The Neel temperature can be considered as the temperature of the ferromagnetic ordering of the Fe magnetic moments in clusters coupled antiferromagnetically.  相似文献   

4.
Experimental analysis of magnetic and structural properties of Fe–Mn–Al–C–Cu alloys with compositions Fe x Mn0.915???x Al0.075C0.01 (series A) and Fe x Mn0.912???x Al0.075C0.01Cu0.003 (series B), 0.500?≤?x?≤?0.800, in steps of 0.050 is presented and discussed. The analysis was performed by integral conversion electrons Mössbauer spectrometry and X-ray diffraction at room temperature. The results suggest, for both series of alloys, that for the highest Mn content, samples exhibit an antiferromagnetic behavior, typical of the FCC or austenite FeMn phase rich in Mn; for those of low Mn content, the coexistence of paramagnetic austenite, typical of the FeMn alloy poor in Mn, a ferromagnetic BCC or ferrite phases can be observed, while for the lowest Mn content, only ferromagnetic (FM) phase tends to prevail. The FM phase is associated to the BCC FeMnAl as was corroborated by X-ray diffraction. The samples with the highest Mn content, the influence of Cu addition is to reduce the mean hyperfine field and to stabilize the antiferromagnetic behavior.  相似文献   

5.
For the Nd0.1La0.9Fe11.5Al1.5 compound, the fine structure of the magnetic transition from the ferromagnetic (FM) to the antiferromagnetic (AFM) states has been studied carefully by means of magnetization (M) and heat capacity (Cp) measurements. Although a single phase with the cubic NaZn13-type structure (Fm3c) has been proved by the room temperature X-ray diffraction pattern, the phase transition has been clearly found to be a stepwise process in M(T) and Cp(T) curves under proper fields. Due to the strong competition between the FM order and AFM order, the characteristic is especially evident under low fields, weakens gradually with the increasing applied field and finally vanishes when the field is higher than 2 T. This multi-step magnetic transition results from the inhomogeneity of the sample, probably due to the inhomogeneous distribution of Nd atoms.  相似文献   

6.
沈保根  胡凤霞  董巧燕  孙继荣 《中国物理 B》2013,22(1):17502-017502
In this article,our recent progress concerning the effects of atomic substitution,magnetic field,and temperature on the magnetic and magnetocaloric properties of the LaFe13-xAlx compounds are reviewed.With an increase of the aluminum content,the compounds exhibit successively an antiferromagnetic(AFM) state,a ferromagnetic(FM) state,and a mictomagnetic state.Furthermore,the AFM coupling of LaFe 13-xAlx can be converted to an FM one by substituting Si for Al,Co for Fe,and magnetic rare-earth R for La,or introducing interstitial C or H atoms.However,low doping levels lead to FM clusters embedded in an AFM matrix,and the resultant compounds can undergo,under appropriate applied fields,first an AFM-FM and then an FM-AFM phase transition while heated,with significant magnetic relaxation in the vicinity of the transition temperature.The Curie temperature of LaFe13-xAlx can be shifted to room temperature by choosing appropriate contents of Co,C,or H,and a strong magnetocaloric effect can be obtained around the transition temperature.For example,for the LaFe 11.5Al1.5C0.2H1.0 compound,the maximal entropy change reaches 13.8 J·kg-1 ·K-1 for a field change of 0-5 T,occurring around room temperature.It is 42% higher than that of Gd,and therefore,this compound is a promising room-temperature magnetic refrigerant.  相似文献   

7.
The magnetization and electrical resistivity of Mn3−xFexSnC (0.5≤x≤1.3) were measured to investigate the behavior of the complicated magnetic phase transitions and electronic transport properties from 5 to 300 K. The results obtained demonstrate that Fe doping at the Mn sites of Mn3SnC induces a more complicated magnetic phase transition than that in its parent phase Mn3SnC from a paramagnetic (PM) state to a ferrimagnetic (FI) state consisting of antiferromagnetic (AFM) and ferromagnetic (FM) components, while, with the change of Fe-doped content and magnetic field, there is a competition between the AFM component and FM component in the FI state. Both the Curie temperature (TC) and the saturated magnetization Ms increase with increasing x. The FM component region becomes broader with further increasing Fe-doped content x. The external magnetic field easily creates a saturated FM state (and increased TC) when . Fe doping quenches the negative thermal expansion (NTE) behavior from 200 to 250 K reported in Mn3SnC.  相似文献   

8.
The isothermal changes in the magnetic entropy and the lattice entropy and the adiabatic temperature change in La(Fe0.88Si0.12)13 and La(Fe0.86Si0.14)13 ferromagnets in a magnetic field are calculated. The calculations are performed with a generalized magnetostriction model of a ferromagnet; the calculation results are compared to experimental data. It is shown that the change in the lattice entropy decreases the magnetocaloric effect and makes it possible to explain the experimental data obtained for La(Fe x Si1 − x )13 (x = 0.86, 0.88) ferromagnets. The temperature dependences of the bulk compression moduli of these ferromagnets are calculated, and these dependences indicate a strong lattice softening in the vicinity of the magnetic phase transition in them. The thermal expansion coefficient and some magnetic properties of the ferromagnet with x = 0.86 are measured to determine the numerical values of the parameters entering into calculation formulas.  相似文献   

9.
Rapidly quenched (Co95Fe5)1-xAlx ribbons are investigated by X‐ray diffraction, magnetization, and Mössbauer effect measurements. A single fcc phase is obtained for all ribbons x ? 10 at.%. The lattice constant increases linearly with x and is discussed in connection with magnetic moment. The influence of Al substitution on both magnetization and Fe‐atom hyperfine field (H) is studied. At 296 K, the magnetization decreases linearly while H drops nonlinearly as x increases. Al substitution leads to substantial differences in iron hyperfine fields in bcc and fcc systems. Fe moment is perturbed differently by Al substitution in fcc (Co95Fe5)1-xAlx and bcc Fe–Al systems.  相似文献   

10.
The exchange striction model is invoked to derive an expression for the entropy of ferromagnetic materials undergoing first- and second-order magnetic phase transitions. The magnetocaloric and barocaloric effects are calculated for the ferromagnet La(Fe0.88Si0.12)13 undergoing a first-order phase transition. The calculated results are in fair agreement with experimental data. The ferromagnet La(Fe0.88Si0.12)13 is used as an example to predict the changes in magnetic and magnetocaloric properties associated with gradual increase in the magnetoelastic coupling constant (i.e., with passage from first- to second-order magnetic transition region). It is shown that stronger magnetoelastic coupling leads to stronger magnetocaloric effects and changes their dependence on magnetic field and pressure. Expressions are obtained for the maximum field- and pressure-induced entropy changes. An analysis is presented of the mechanism responsible for the increase in magnetocaloric and barocaloric effects associated with change from the second- to first-order magnetic phase transition.  相似文献   

11.
Combined Co K-edge XANES-XMCD and XRD measurements were used to shed light on the magnetic and structural phase diagram of the Fe1?x Co x alloy under HP in the Co-rich region (x≥0.5). At 0.5≤x≤0.75, the alloy shows a pressure-induced structural/magnetic phase transition from bcc-FM to hcp-non-FM phase just like pure iron but at higher pressures. The x=0.9 sample has an fcc structure in the pressure range investigated but presents an FM to non-FM transition at P=64 GPa, a significantly lower pressure compared with pure Co (predicted ≈120 GPa), showing that Fe impurities strongly affect the HP Co response.  相似文献   

12.
We report57Fe Mössbauer measurements in the diluted antiferromagnetic (AF) FexZn1?xF2 withx=0.25 at temperatures between 4.2 and 28 K. DC susceptibility measurements show a spin-glass (SG) phase at low temperatures forx?0.3. Our Mössbauer spectra show a competitive coexistence of an SG phase and AF order. We propose an interpretation in terms of clusters in the AF order and some spins exhibiting SG behavior.  相似文献   

13.
Measurements of the reversible magnetization at low dc fields have been used to investigate the magnetic response near the multicritical point (xc) of two sets of amorphous alloys. In both cases, the ferromagnetic (FM) to spin glass (SG) transition line is found to be non-monotonic. The collapse of the magnetization as xx+c and the rapid increase in the susceptibility as xx-c are suggestive of a percolation transition in the magnetic network at x=xc. From a study of the non-linear susceptibility in the most concentrated spin glass alloy in each system, we obtain scaling exponents in agreement with previous reports providing further support for a thermodynamic phase transition at the spin glass temperature. For the first time we find a divergence in the linear susceptibility in these samples similar to that expected for the non-linear susceptibility and attribute it to their proximity to the FM phase. Dramatic changes in the transition temperatures and a perceptible shift in xc are observed when normal boron is replaced by enriched boron (≈100%11B) in one series of alloys.  相似文献   

14.
The Pr(Fe1 ? x Al x )2 alloys with concentrations x = 0–1 have been synthesized under a high pressure. The phase composition and lattice parameters (a and c) have been determined as a function of x. The magnetic and Mössbauer measurements have been performed at T = 90–400 K. It has been established that the Curie temperatures of alloys linearly depend on their composition.  相似文献   

15.
The phase diagram (T?x plot) of thermally depoled tetragonal PLZT materials has been investigated by means of X-ray diffraction, Capacitance and DSC measurements. Materials with a low La content show a classical Fet?PEc transition. This transition has first or second order character, dependent on the Zr/Ti ratio.Materials with a medium and high La content show a diffuse transition from the cubic high temperature phase to a tetragonal, so called β phase. This β phase has no clear FE properties and a spontaneous transition to the FEt phase on lowering the temperature only takes place for materials with a medium La content. For materials with a high La content a spontaneous βt→ FEt transition is not observed.  相似文献   

16.
X-ray diffraction patterns and nuclear gamma resonance spectra of La(Fe0.88Si x Al0.12 ? x )13 compounds in the paramagnetic state at room temperature have been investigated. It has been found that all samples have a cubic structure of the NaZn13 type, in which Si and Al atoms disorderly substitute for iron in the crystallographic position 96i. An analysis of the Mössbauer spectra using the fitting with doublets with different quadrupole splittings has revealed that the distributions of the aluminum and silicon impurity atoms substituting for iron differ significantly. Aluminum is statistically distributed over nine positions of the 96i type in the generalized coordination sphere of the Fe2 atom, whereas silicon predominantly substitutes for only six of the nine positions.  相似文献   

17.
The electronic structures and magnetic properties of Fe16N2 system and their pressure dependence were investigated by using first-principles calculations based on the density functional theory. It has been found that the total magnetic moment in Fe16N2 system decreases monotonically as increasing pressure from 0 to 14.6 GPa. A phase transition from ferromagnetic (FM) to non-magnetic (NM) occurs with a volume collapse of around 0.008  at 14.6 GPa, The lattice constants a and c for magnetic results decrease monotonically as pressure increasing from 0 to 14.6 GPa, at 14.6 GPa, the lattice constant a decreases sharply, on the contrary, the lattice constant c increases abruptly. We think that the change of microscopic structure of Fe16N2 is responsible for the phase transition from FM to NM.  相似文献   

18.
Experimental results on magnetic and electric properties of Ce(Fe1-xAlx)2, x < 0.10 are qualitatively discussed on the basis of previous theoretical studies. These studies agree with the existence of a canted spin phase in a certain concentration region.  相似文献   

19.
The temperature dependence of the susceptibility of the paraprocess χpara (T) is investigated for samples in the CuGaxAlxFe2?2xO4 (x = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7), CuGaxAl2xFe2?3xO4 (x = 0.1, 0.2, 0.3, 0.4, 0.5), and GaxFe1? xNiCrO4 (x = 0.0, 0.2, 0.4, 0.6, 0.8) systems. It is found that long-range magnetic order arises in spinel ferrites at the temperature Ttran of the transition from a cluster spin-glass state to a frustrated magnetic structure with a maximum in the temperature dependence of the susceptibility of the paraprocess.  相似文献   

20.
The feasibility of synthesizing a wide spectrum of multiphase microstructurally ordered high-temperature thermoelectrics with highly anisotropic thermoelectric parameters is demonstrated with an aluminum-doped CrSi2-β-FeSi2 system the composition of which varies from Cr0.1Fe0.9Si2?x Al x to Cr0.9Fe0.1Si2?x Al x (x = 0.0–0.4). Doping of either phase (CrSi2 and β-FeSi2) is viewed as a promising way for synthesizing n- and p-type domains inside the same sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号