首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the present work, Ce3+/Tb3+ co-doped 60P2O5-30BaO-10B2O3 phosphate glasses are prepared and their luminescence properties are presented. Under excitation at 303 nm, the Ce3+ ions singly doped sample show a novel red emission besides the UV one. The co-doped samples show enhanced Tb3+ ions emission with the increasing of Tb3+ ions concentration at the cost of Ce3+ emission. The mechanism of this luminescent behavior is discussed with respect to the relevant energy transfer process.  相似文献   

2.
Jiajia Zhou  Yu Teng  Geng Lin  Jianrong Qiu 《Journal of Non》2011,357(11-13):2336-2339
The ultraviolet to near-infrared spectral modification in Ce3+ and Yb3+ codoped phosphate glasses was realized through the energy transfer from Ce3+ to Yb3+. The absorption spectra, fluorescence excitation and emission spectra, luminescence decay curves, and time-resolved emission spectra were measured and analyzed. The energy transfer efficiency and concentration quenching efficiency were calculated based on the decay curves of Ce3+ 340 nm emission and Yb3+ 976 nm emission. The calculated and experimental NIR emission intensities on the Yb3+ concentrations were compared and discussed.  相似文献   

3.
Chemical and structural effects in LuAlO3-Ce3+ single crystals grown by the Bridgman method were studied using spectral emission, x-ray, etching and optical techniques. The Ce concentration distribution was found to exhibit the normal freeze behavior with partition coefficient of 0,17. The expansion of the unit cell volume due to incorporation of Ce was measured. Dislocation etch pits were revealed on (010), (100) and (001) crystal faces. Thermal expansion behavior of LuAlO3 was studied along the major crystallographic axes in between the room temperature and 1000 °C. The scintillation performance of 5 × 5 × 10 mm3 samples was measured using a 662 keV gamma source with a shaping time of 1.2 μs. The light yield was increasing from 40% BGO to 70% BGO with increasing of the Ce3+ content from 0.13 at.% to 0.9 at.%.  相似文献   

4.
The Mg-Sr-Ba hexagonal aluminates (MgSrBa)Al12O19 doped with either Ce3+ or Tb3+ ion have been synthesized by solid-state reaction. Crystal structure variations with the increasing Ba2+ concentration have been thoroughly studied. When the concentration of Ba2+ reaches 0.39, the crystal structure becomes the ideal magnetoplumbite-type (No. PDF #80-1195), however, it becomes the same structure as BaMgAl10O17 with space group P63/mmc when Sr2+ is completely replaced by Ba2+ ions. In Ce3+ doped compounds, the emission peak of the Ce3+ ion is gradually red-shifted when the concentration of Mg2+ ion increases, while the 4f-5d transition of Ce3+ at 260 nm splits into five components. In the Tb3+ doped compounds, the spin-allowed and spin-forbidden 4f-5d transitions of Tb3+ have been observed. The intensity of the spin-forbidden 4f-5d transition is gradually increased with decreasing Sr2+ concentration and becomes dominant when Sr2+ is completely replaced by Ba2+. These experimental observations are also discussed in the context and match well with the theoretical calculations of 4f-5d transitions of Tb3+.  相似文献   

5.
Downconversion (DC) luminescence with emission at about 1000 nm under excitation of 448‐nm light in Ho3+/Yb3+ codoped α‐NaYF4 single crystal is realized. The crystal was grown by the Bridgman method using KF as an assisting flux in a NaF‐YF3 system. The energy‐transfer process and quantum cutting (QC) mechanisms are presented through the analysis of the spectra. The energy‐transfer processes of first‐ and second‐order cooperative DC are responsible for the increase of the emission intensity at 1000 nm, and it is the first‐order cooperative DC that is dominant for the DC process. When the Ho3+ concentration is fixed at about 0.8 mol%, the optimal concentration for ∼1000 nm emission is 3.02 mol% Yb3+ in the current research. The energy‐transfer efficiency and the total quantum efficiency are analyzed through the luminescence decay curves. The maximum quantum cutting efficiency approaches to 184.4% in α‐NaYF4 single crystals of 0.799 mol% Ho3+ and 15.15 mol% Yb3+. However, the emission intensity at 1000 nm decreases while the energy‐transfer efficiency from Ho3+ to Yb3+ increases, which may result from the fluorescence quenching between Ho3+ and Yb3+ ions, Yb3+ and Yb3+ ions.  相似文献   

6.
This study was explored in series of the optical, thermal, and structure properties based on 60P2O5-10Al2O3-30ZnO (PAZ) glasses system that doped with varied rare-earth (RE) elements Yb2O3/Er2O3. The glass transition temperature, softening temperature and chemical durability were increased with RE-doping concentrations increasing, whereas thermal expansion coefficient was decreased. In the optical properties, the absorption and emission intensities also increase with RE-doping concentrations increasing, When Er2O3 and Yb2O3 concentrations are over than 3 mol% in the Er3+-doped PAZ system and Yb3+-doped concentration is over than 3 mol% for Er3+/Yb3+-codoped PAZ system, the emission intensity significantly decreases presumably due to concentration quenching, formation of the ions clustering, and OH groups in the glasses network. It is suggested that the maximum emission cross-section (σe) is 7.64 × 10− 21 cm2 at 1535 nm is observed for 3 mol% Er3+-doped PAZ glasses. Moreover, the maximum σe × full-width-at-half-maximum is 327.8 for 5 mol% Er3+-doped PAZ glasses.  相似文献   

7.
The preparation of sodium phosphate glasses singly and doubly doped with rare earth ions Ce3+ and Eu3+ by melt quench method is described. The spectroscopic characterizations of the samples are done using absorption, excitation and emission spectra. The nonradiative energy transfer between trivalent cerium and europium is achieved through the phosphate lattice and the results are incorporated. The main reason of quenching of Ce3+ ions and the mechanism of energy transfer is mainly electric dipole-dipole in nature for Ce3+:Eu3+ system.  相似文献   

8.
《Journal of Non》2006,352(28-29):2969-2976
A colorless transparent luminescence material was successfully prepared by impregnation of leached, porous glass with Tb3+ ions followed by reductive sintering in a CO atmosphere. Tb3+ emissions under ultraviolet (UV) and vacuum ultraviolet (VUV) excitation clearly showed the most intense emission band to be situated at 543 nm, which corresponds to the 5D4  7F5 transition. Sintering of the Tb glass in a reducing atmosphere resulted in a significant enhancement of Tb3+ emission intensity in comparison with sintering in air. The presence of traces of cerium ions was verified in Tb glasses, and more Ce3+ ions were produced as a result of the reductive sintering. The increase in Ce3+ ions was believed to be mainly responsible for the enhancement of 5D3  7Fj and 5D4  7Fj transitions from Tb3+ ions owing to an energy transfer channel. A clearly defined difference in the spectral energy distribution of Tb3+ emissions was found for 231 nm UV and 160 nm VUV excitation of the Tb glass. The phenomenon of cross relaxation was only observed under 231 nm UV excitation. Different excitation mechanisms were taken into account. Direct excitation of Tb3+ ions together with Ce3+ ions occurred in the Tb glass under the 231 nm UV light, whereas indirect excitation consisting of host absorption of energy and transfer from host to Tb3+ ions occurred under the 160 nm VUV light.  相似文献   

9.
Transparent Lu0.8Sc0.2BO3 crystals doped with 1 at%Ce3+ and co-doped with 1 at% and 3 at%Ga3+ were grown by the Czochralski method. We applied absorption spectrum, luminescence spectra under UV and X-ray excitation, fluorescence decay curve, three dimensional thermoluminescene and X-ray absorption near edge spectroscopy to study the effect of Ga3+ co-doping on the Lu0.8Sc0.2BO3:Ce scintillation crystals. Experimental results indicated that no positive contribution of the Ga3+ ion doping on the scintillation efficiency was found. The causes for the deterioration of scintillation efficiency by co-doping Ga3+ were revealed. The decrease of practical cerium content and the Ce3+/Ce4+ ratio in crystals, and the increase of the trap concentrations, although the corresponding trap types still maintained the same, played a joint influence on the degrading of scintillation efficiency of Lu0.8Sc0.2BO3:Ce crystals.  相似文献   

10.
Various fluoride, phosphate and borosilicate glasses with known properties and global structure have been doped with Dy3+ (4f9) and Sm3+ (4f5) between 1018 and 1021 cm?3 and their time resolved fluorescence in the visible range in combination with characteristic physical properties were studied. Different fit procedures were carried out. Although both ions differ in their intrinsic fluorescence lifetime, with 1.5 ms for Dy3+ and 6.5 ms for Sm3+, their dependence on glass matrix is remarkable similar. Fluoroaluminate glasses with varying phosphate content between 0 and 20 mol% (FPx), a pure phosphate glass (P100), and two borosilicate glasses with low (DURAN®-like) and high optical basicity (NBS1) were used for investigations. A strongly ionic surrounding by fluorine ligands, as in fluoroaluminate glass samples, provides the longest fluorescence lifetime. It decreases with increasing phosphate content by increasing oxygen surrounding and with increasing RE3+ doping. Large differences were detected in the two borosilicate glasses depending on their optical basicity mainly due to differences in the Na2O/B2O3 ratio. Duran-like samples with low Na2O content have shown phase separation with higher doping concentration. The RE3+ ions are accumulated in the borate-rich droplets. Surprisingly only very low concentration-quenching effects were observed. In the opposite of NBS1 samples with high Na2O content this generated extremely high quenching effect.  相似文献   

11.
《Journal of Non》2005,351(43-45):3542-3546
YVO4:RE (RE = Dy3+, Sm3+, Er3+) were prepared via an in situ chemical co-precipitation technology, and the assembly process of hybrid precursors was as follows: using rare earth coordination polymers with salicylic acid as precursors and composing with the polyvinyl alcohol (PVA) as dispersing media. Their microstructure and micromorphology have been analyzed by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), which indicate that there exist some novel cobblestone-like microcrystalline particles. All the doped rare earth ions showed their characteristic emissions in YVO4 hosts. The concentration quenching all appeared of the three dopant ions and the optimum concentrations for Dy3+, Er3+, Sm3+ were determined to be 2, 3, 1 mol% in yttrium vanadate particles, respectively.  相似文献   

12.
《Journal of Non》2005,351(49-51):3752-3759
Alkali fluoroborate glass systems containing manganese cations have been thoroughly investigated in order to obtain information about the structural role of manganese in such glass hosts. The amorphous phase of the prepared glass samples R2O–RF–B2O3:MnO (with R = Li and Na) was confirmed from their X-ray diffraction. From the infrared spectra of these glass systems it was concluded that the glass structure contains two group of bands; one due to trigonal BO3 units and the second due to the tetrahedral BO4 units. As manganese was introduced, replacing lithium or sodium, it acts as a network modifier and the intensity of the second group of bands increases at the expense of the first group of bands. The optical absorption spectra of R2O–RF–B2O3:MnO exhibited two conventional absorption bands; one due to Mn2+ ions and the other due to Mn3+ ions. The ESR spectra of these glasses showed a six-line hyper-fine structure centered at g = 2.01 (due to Mn2+ ions) and another signal at g = 4.3 (due to Mn3+ ions). The intensity of optical absorption bands and the ESR signal due to Mn2+ ions decreases with increasing MnO concentration indicating the conversion of Mn2+ ions into Mn3+ ions in the glass network. The thermoluminescence studies on these glass systems showed a quenching of TL output with increase in the concentration of MnO. All the obtained results were discussed on the basis of the glass structure and the conversion of Mn2+ into Mn3+ ions with increasing concentration of MnO in the glass systems.  相似文献   

13.
The fluorine-ion conductivity of single crystals with a tysonite (LaF3) structure with heterovalent isomorphic substitutions of highly polarizable Cd2+ cations with a 18-electron shell for rare earth ions Ce3+ have been studied for the first time. Ce0.995Cd0.005F2.995 single crystals have been grown from melt by the Bridgman technique in a fluorinating atmosphere. The fluorine-ion conductivity of single crystal is measured by impedance spectroscopy in the temperature range from 153 to 1073 K, where it increases by a factor of 109, approaching the value σdc = 5 × 10–2 S/cm at 1073 K. At T0 = 450 ± 20 K, the dependence σdc(T) is split into two portions with the ion-transport activation enthalpy ΔHσ = 0.39 ± 0.01 eV (T < T0) and ΔHσ = 0.23 ± 0.02 eV (T > T0). It is found that at T = 293 K the conductivity σdc = 3 × 10–5 S/cm of Ce0.995Cd0.005F2.995 crystal is higher by a factor of 10 than the conductivity of the tysonite matrix CeF3 and close to the σdc value for Ce0.995Sr0.005F2.995 crystal. This finding indicates a significant effect of the substitutions of Cd2+ ions for Ce3+ on the σdc value and the advantage of Cd2+ ions over Ca2+ and Ba2+ from the viewpoint of increasing σdc.  相似文献   

14.
Fluorescence spectra of Ce3+ ions in silicate, borate, and phosphate glasses melted in Ar were measured. The relative fluorescence intensity of Ce3+ in the ultraviolet region increased in the order of R = Ba, Ca, Sr, and Mg in the 20Li2O-20RO-60SiO2 glass samples and with decreasing BaO content in the BaO-B2O3 glass samples, respectively. In contrast, the relative fluorescence intensity of Ce3+ did not change with varying the glass composition in phosphate glass samples. The compositional dependence of the relative fluorescence intensity of Ce3+ is discussed in terms of redox reaction of Ce3+-Ce4+ in oxide glasses.  相似文献   

15.
Europium-doped lead germanate and lead fluorogermanate glasses are studied by using differential thermal analysis, X-ray diffraction, photoluminescence and fluorescence lifetimes measurements of the 5Dj, = 0, 1, 2 levels. PbF2 addition increases the thermal stability of the lead germanate glass, while Eu3+ ions promote the crystallization of β-PbF2:Eu3+ nano-crystals embedded in a glassy matrix. In the lead fluorogermanate glasses, Eu3+ ions exhibit a strong affinity for F ions although oxygen ions are much more numerous. It appears that luminescence concentration quenching is not important, while cross relaxation is very efficient in the glasses. The results allow to propose for these glasses a molecular model in which small fluorine rich island, incorporating the Eu3+ ions in low symmetry sites, are separated from each other by chains of germanate (GeO4)4− ions linked together.  相似文献   

16.
A. Herrmann  S. Fibikar  D. Ehrt 《Journal of Non》2009,355(43-44):2093-2101
Various fluoride, phosphate and borosilicate glasses with known properties and global structure have been doped with Eu3+ (4f6) at doping concentrations between 1018 and 1021 cm?3. By applying reductive melting conditions Eu3+ could partially be transformed to Eu2+ (4f7). Four fluoroaluminate glasses with varying phosphate content between 0 and 20 mol% (FPx), a pure phosphate glass (P100) and two borosilicate glasses with low (DURAN®-like) and high optical basicity (NBS1) have been used for these investigations. The time-resolved fluorescence in the visible range has been studied for both ions. Although static and dynamic fluorescence of Eu3+ and Eu2+ are dramatically different (f–f-transitions for Eu3+; d–f-transitions for Eu2+), glass structure changes have a similar influence on the dynamic fluorescence behavior of both ions. A strongly ionic surrounding due to fluorine ligands as in fluoroaluminate glass samples provides the longest fluorescence lifetime (about 7 ms for Eu3+; about 1.3 μs for Eu2+). Increasing phosphate content decreases the fluorescence lifetime due to more oxygen ligands. Interesting differences have been found for the two borosilicate glasses due to the difference in their optical basicity (Na2O/B2O3 ratio). Measurements indicate a homogeneous distribution of europium ions in most FP samples. NBS1 measurements suggest that two different local europium sites are formed. For Duran-like samples only one specific europium site was found, although these samples show phase separation at high doping concentrations into a SiO2-rich phase and borate- and europium-rich droplets. Fluorescence quenching due to energy transfer from Eu2+ to Eu3+ could be found for co-doped samples; Eu3+-doped samples show no fluorescence quenching.  相似文献   

17.
We investigated the scintillation properties of Cs2LiGdCl6:Ce3+ as a function of the Ce concentration. X-ray excited luminescence spectra of the scintillation material showed broad emission bands between 360 and 460 nm, with two overlapping peaks, due to the d→f transitions on Ce3+ ions. The samples provide good scintillation results. The energy resolution was found to be 5.0% (FWHM) at 662 keV for 10% Ce sample. Under γ-ray excitation, Cs2LiGdCl6:Ce3+ showed three exponential decay time components of about 130–200 ns decay time constant. The light output of the investigated samples was 20,000 photons/MeV for a 10% Ce concentration. The light output deviation from the linear response is within 7% between the energy range of 31 and 1333 keV. Overall, the scintillation properties confirm that Cs2LiGdCl6:Ce3+ single crystal is a promising candidate for medical imaging and radiation detection.  相似文献   

18.
《Journal of Crystal Growth》2006,286(2):476-480
Color centers and impurity defects of Ce:YAG crystals grown in reduction atmosphere by temperature gradient techniques have been investigated by means of gamma irradiation and thermal treatments. Four absorption bands associated with color centers or impurity defects at 235, 255, 294 and 370 nm were observed in as-grown crystals. Changes in optical intensity of the 235 and 370 nm bands after gamma irradiation indicate that they are associated with F+-type color center. Charge state change processes of Fe3+ impurity and Ce3+ ions take place in the irradiation process. The variations of Ce3+ ions concentration clearly indicate that Ce4+ ions exist in Ce:YAG crystals and gamma irradiations could increase the concentration of Ce3+ ions. Annealing treatments and the changes in optical density suggest that a heterovalent impurity ion associated with the 294 nm band seems to be present in the crystals.  相似文献   

19.
Optically transparent garnet single crystals were grown from Lu3Al5O12 melts containing different RE3+ ions. The distribution coefficient of Nd3+ ions is found to be a function of the growth rate. Lu2O3–Al2O3 system studies have been partially carried out. Measurements of the lattice data, absorption spectra and comparison with some properties of Y3Al5O12 single crystals have also been made.  相似文献   

20.
By solid state reaction, LiMgAlF6 and LiMgAlF6: Ln3+ are synthetized with the ratio 120/100/110 of LiF/MgF2/AlF3, at 1008 K, in high-purity Ar stream. Their crystal structure which belongs to hexagonal system are determined by X-Ray-Diffraction (XRD). Luminescence characteristics of Ce3+, Eu3+, Tb3+ and sensitization of Ce3+ to Tb3+ in LiMgAlF6 are studied. It is shown that the sensitization of Ce3+ to Tb3+ is efficient and a bright green emission is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号