首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Invited for this month''s cover picture are the groups of Masahiro Ikeshita and Takashi Tsuno at Nihon University and Yoshitane Imai at Kindai University (Japan). The cover picture shows the comparison of circularly polarized luminescence (CPL) properties of square planar platinum(II) complexes with different coordination geometry. Computational studies have been carried out to investigate these structure‐dependencies, and revealed that the distortion of the coordination geometry results into an enhancement the chiroptical responses of these compounds. Read the full text of their Research Article at 10.1002/open.202100277.

“… How does the stereochemistry of transition metal complexes affect their photophysical properties…” Find out more about the story behind the front cover research at 10.1002/open.202100277.  相似文献   

2.
The Front Cover shows the preferred conformation of oligomers of the aminoacid Amc5a. The backbone sequences were investigated using DFT methods in solution. More information can be found in the Research Article by Hae Sook Park et al.  相似文献   

3.
Invited for this month''s cover picture is the group of Young Kee Kang at Chungbuk National University (Republic of Korea). The cover picture shows the preferred conformation of the hexamer of ϵ‐amino acid Amc5a with a cyclopentane substituent in the backbone investigated using DFT methods in chloroform and water. The Amc5a hexamer adopted a stable left‐handed conformation with a rise of 4.8 Å per turn both in chloroform and water. However, the hexamer of Ampa (an analogue of Amc5a with replacing cyclopentane by pyrrolidine) adopted different conformations in chloroform and in water. Read the full text of their Research Article at 10.1002/open.202100253.

“…Finding the appropriate protocol is a crucial step for conformational prediction of peptides and peptide foldamers in solution…” Find out more about the story behind the front cover research at 10.1002/open.202100253.  相似文献   

4.
Invited for this month''s cover picture are the groups of Wolfgang Hübner (TU Kaiserslautern, Germany), Annie Powell (Karlsruhe Institut of Technology, Germany), and Andreas‐Neil Unterreiner (Karlsruhe Institut of Technology, Germany). The cover picture shows the Dy2Ni2‐molecular magnet being excited with a UV/Vis laser pulse, together with its time‐resolved spectrum after the pulse. The comparison of the theoretical and the experimental spectra together with both the observed and the calculated relaxation times reveal, among others, three key points: the intermediate states participating in the laser‐induced dynamics, the partial metal‐to‐oxygen charge‐transfer excitations, and the order of magnitude of the coupling of the molecular magnet to the thermal bath of the environment. Read the full text of their Full Paper at 10.1002/open.202100153.

“… The comparison of the theoretical and the experimental spectra together with both the observed and the calculated relaxation times reveals three key points…” Find out more about the story behind the front cover research at 10.1002/open.202100153.  相似文献   

5.
Invited for this month''s cover picture is the group of Dr. Satoko Hayashi at Faculty of Systems Engineering and Chemistry at Wakayama University. The cover picture shows the linear Se16 σ(16c–30e) interactions, illustrated by the molecular graph type on the optimized structure of the dicationic octamer of 1,5‐(diselena)cane. HOMO‐1 of ψ462 is drawn on the structure, which is located predominantly on the Se atoms. The optimized structure is stable, due to the nice engagement between the (CH2)3 moieties. The contour maps of ρ(r) are also drawn on the molecular C s planes of the dicationic dimer and trimer to demonstrate clearly the existence of the interactions between Se atoms. Read the full text of their Full Paper at 10.1002/open.202100017.

“… To improve the causality of experimental results, we have proposed a new concept, called “Keisan‐sendo…” Find out more about the story behind the front cover research at 10.1002/open.202100017.  相似文献   

6.
A direct Pd(ii)-catalyzed kinetic resolution of heteroaryl-enabled sulfoximines through an ortho-C–H alkenylation/arylation of arenes has been developed. The coordination of the sulfoximine pyridyl-motif and the chiral amino acid MPAA ligand to the Pd(ii)-catalyst controls the enantio-discriminating C(aryl)–H activation. This method provides access to a wide range of enantiomerically enriched unreacted aryl-pyridyl-sulfoximine precursors and C(aryl)–H alkenylation/arylation products in good yields with high enantioselectivity (up to >99% ee), and selectivity factor up to >200. The coordination preference of the directing group, ligand effect, geometry constraints, and the transient six-membered concerted-metalation–deprotonation species dictate the stereoselectivity; DFT studies validate this hypothesis.

A Pd/MPAA catalysed KR of heteroaryl substituted sulfoximines through C–H alkenylation and arylation (up to >99% ee) is developed. In-depth DFT studies uncover the salient features.  相似文献   

7.
The construction of C(sp2)–X (X = B, N, O, Si, P, S, Se, etc.) bonds has drawn growing attention since heteroatomic compounds play a prominent role from biological to pharmaceutical sciences. The current study demonstrates the C(sp2)–S/Se and C(sp2)–N bond formation of one carbon of isocyanides with thiophenols or disulfides or diselenides and azazoles simultaneously. The reported findings could provide access to novel multiple isothioureas, especially hitherto rarely reported selenoureas. The protocol showed good atom-economy and step-economy with only hydrogen evolution and theoretical calculations accounted for the stereoselectivity of the products. Importantly, the electrochemical reaction could exclusively occur at the isocyano part regardless of the presence of susceptible radical acceptors, such as a broad range of arenes and alkynyl moieties, even alkenyl moieties.

We have developed an efficient and sustainable electrochemical strategy for the double C(sp2)–X (S/Se, N) bond formation of isocyanides simultaneously. A series of novel isothio/selenoureas were obtained via a three-component cross-coupling.

The construction of C(sp2)–X (X = B, N, O, Si, P, S, Se, etc.) bonds has drawn increased attention from researchers since heteroatomic compounds play a prominent role in various fields.1 Traditionally, the transition-metal-catalyzed cross-coupling of a nucleophile and an electrophile is an important method for the formation of C(sp2)–X bonds.2 Obviously, the direct cross-coupling of C(sp2)–H/X–H is a time-, effort-, and resource-economical process to construct C(sp2)–X bonds as it avoids the pre-functionalization of substrates.3 Alternatively, radical chemistry provides greener and more mild strategies for the formation of C(sp2)–X bonds, and a variety of high added-value compounds can be afforded successfully.4 Despite the numerous advances, these reported reactions are limited as they involve only single C(sp2)–X bond formation. Access to double C(sp2)–X bonds formation of one carbon remains still a room for improvement stimultaneously.As an ideal connector, isocyanides could be inserted into metal–carbon and metal–heteroatom bonds to construct double C(sp2)–X bonds.5 On the other hand, isocyanides could transform into heteroatomic molecules with electrophiles, nucleophiles and radicals.6 Although many elegant studies have been reported, the above methods are largely limited by the pre-functionalization of the substrate, the toxicity of metals or tedious synthesis steps. From the point of synthetic efficiency and economy, exploiting a novel, efficient, and diverse radical strategy to access double C(sp2)–X bonds under mild conditions and with broad functional group tolerance is of paramount importance and in urgent demand.Radical transformation processes are ubiquitous throughout synthesis chemistry and provide new ideas for forging new bonds and novel molecules, especially valuable product motifs.7 As a complementary strategy to conventional radical-based reactions, electrochemistry, effectively transferring electrons from the electrode surface to the substance, has been developed into a powerful synthetic technique toward radical chemistry.8 This electrochemical strategy further stimulated a resurgence of interest in radical chemistry with good atom-economy and step-economy.9 Myriad electrochemical-induced radical reactions have been reported via single-electron oxidation/reduction with a plethora of radicals and radical acceptors. As reported, alkenes, alkynes, and cyano and aromatic compounds could be considered to be favorable radical acceptors in diverse transformations, such as cross-coupling, cyclization and difunctionalization reactions.10 However, the application of isocyanides as radical acceptors is limited in utility due to electrochemical tandem cyclization.11 Therefore, on the basis of our research on electrochemical oxidative functionalization of isocyanides,12 we continued to explore the properties of isocyanides as radical acceptors under electrochemical conditions.Initially, we commenced our investigations by using abundant and inexpensive phenyl disulfide (1), ethyl 2-isocyanoacetate (2) and 1H-benzo[d][1,2,3]triazole (3) as model substrates in a single operation via a three-component cross-coupling. After systematic optimization, the isothiourea 21 could been obtained in 90% isolated yield. To gain insights into the reaction process, we continued to carry out a series of control experiments as shown in Scheme 1. The control experiment demonstrated that electricity is indispensable. Under standard conditions, addition of 2.0 equivalents of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) showed no traces of product. Similarly, the reaction was suppressed in the presence of butylated hydroxytoluene (BHT). The P(OEt)3-trapping product could be detected by gas chromatography mass spectrometry (GCMS). Simultaneously, a S-centred radical signal (g = 2.0070, AN = 13.40 G, AH = 14.88 G) was quickly trapped by 5,5-dimethyl-1-pyrroline N-oxide (DMPO) via electron paramagnetic resonance (EPR) experiments. The reported results revealed that this reaction might proceed via S-radical pathways.Open in a separate windowScheme 1Control experiments.For deeper research of the priority of interaction for isocyanides vs. other radical acceptors with radicals, we sought to conduct robustness screening of a wide range of radical acceptors as shown in Scheme 2.13 The addition of an aryl olefin led to the complete shutdown of product formation (21) and the products of difunctionalization of alkenes were also not detected. To our delight, the alkenyl moiety did not affect the reaction efficiency under the electrochemical conditions. Unlike the aryl olefin, the addition of phenylacetylene did not inhibit product formation (21), delivering a yield of 93%. Similarly, ethyl 2-isocyanoacetate could be transformed into product (21) smoothly with 1-heptyne. The addition of mesitylene preserved the yield, while the yield decreased slightly with anisole. With the addition of furan and thiophene, an excellent yield of product (21) could still be obtained. Beside electron-donating arenes, we continued to add electron-withdrawing arenes to the reaction system. As expected, a satisfactory yield was obtained with 4-cyanopyridine. The results revealed that the electrochemical reaction exclusively occurred at the isocyano part regardless of the presence of electron-withdrawing arenes, electron-donating arenes and the alkynyl moiety, even the alkenyl moiety, which are also susceptible to radical conditions.Open in a separate windowScheme 2Competitive experiments of isocyanides vs. other radical acceptors with radicals. Conditions: 1 (0.15 mmol), 2 (0.6 mmol), 3 (0.5 mmol), R. A. = radical acceptors (0.6 mmol), nBu4NBF4 (0.5 mmol), MeCN (6 mL), cloth anode, Pt cathode, undivided cell, constant current = 10 mA, room temperature, N2, 2.25 h. 1HNMR yield, dibromomethane as an internal standard.In order to further investigate the compatibility, we firstly examined the substrate scope of alkyl disulfides for the synthesis of isothioureas with ethyl 2-isocyanoacetate (2) and 1H-benzo[d][1,2,3]triazole (3) as shown in Scheme 3. To our delight, the yields did not decrease significantly with the increase of the carbon chain from methyl to decyl in this transformation (4–7). Isopropyl, isobutyl, cyclopentyl and cyclohexyl were well tolerated with good to excellent yields (8–11). Substances, containing sensitive benzylic C–H bonds, were tolerated to access novel isothioureas in this electrochemical induced-radical process (12–14, 34). Afterwards, we continued to explore the applicability from alkyl disulfides to thiophenol and a series of molecule isothioureas were obtained successfully with satisfactory yield. Thiophenol, containing electron-neutral (F, Cl, Br, H), electron-withdrawing (OCF3, CF3, and CO2Me) and electron-donating (Me, Et, tBu, OMe, and SMe) groups, could smoothly transform to realize this process with high stereoselectivity under mild conditions (15–26). The structure of Z-conformer (16) was confirmed by X-ray crystallographic analysis. In addition, this protocol was successfully applied to thiophenols bearing diverse groups at different positions with good yields, indicating that steric hindrance has no obvious effect (20, 27–31). With curiosity, we tried to evaluate the tolerance of diselenides to construct novel Se–C–N bonds simultaneously. Unexpectedly, regardless of alkyl diselenides (32–33), benzyl diselenide (34) or aryl diselenide (35), all were well tolerated under electrochemical conditions, providing a series of unprecedented isoselenoureas, which were inaccessible by conventional methods. The compatibility of sensitive functional groups provides an opportunity for further molecular modification. The sensitive functional architectures including but not limited to ester (36), benzyloxy (37), allyl and allyloxy as well as endene (38, 41–44), labile alkyl chloride (39) and alkyl bromide (40), propargyl (44), and thiophene (45), all remained intact, enriching the diversity of heteroatom compounds. The merit of this methodology was further demonstrated by elaboration of a wide gamut of functional molecules and drug molecules to diverse isothioureas. Natural products including l-menthol and geraniol (46–47), food additives including isopulegol and furfuryl alcohol (48–49), and pharmaceuticals including ibuprofen (50) were apt to give rise to the corresponding isothioureas in 50–78% yields.Open in a separate windowScheme 3Scope of thiophenols/disulfides/diselenides. Conditions: a disulfides/diselenides (0.15 mmol) or b thiophenols (0.3 mmol), isocyanides (0.6 mmol), 1H-benzotriazole (0.5 mmol), nBu4NBF4 (0.5 mmol), MeCN (6 mL), cloth anode, Pt cathode, undivided cell, constant current = 10 mA, room temperature, N2, 2.25 h. Isolated yield.After defining the scope of thiophenols and disulfides, we turned our attention to explore the substrate scope with respect to nucleophiles in Scheme 4. Benzotriazole, with mono-substitution or multi-substitution, could be efficiently converted to the corresponding skeletons in 55–75% yields (51–54). Under standard conditions, pyrazole also showed great reactivity with phenyl disulfide or ethyl disulfide (55–56). The introduction of a halogen group in pyrazolylcycle, especially a subtle C–I bond, was compatible with satisfactory results (57–59, 64–65). 4-Methyl-1H-pyrazole as a coupling partner also realized the aminosulfenylation of isocyanide, albeit less efficiently (62). Of note is that the yield was increased to 70% from 40% by replacing methyl with phenyl (63). In addition to benzotriazole and pyrazole derivatives, other triazoles and tetrazole were proved to be viable coupling partners as well, enabling access to the target products in synthetically useful yields (66–70). Subsequently, with this established-optimized condition, we set out to investigate substrates for isocyanide coupling partners. With methyl isocyanoacetate (71), a similar effect was observed in an electrochemical difunctionalization reaction. As expected, both tosylmethyl isocyanide and benzyl isocyanide were demonstrated to be competent substrates (72–73). Cyclohexyl isocyanide, as a representative of secondary isocyanides, converted into the corresponding product (74). Gratifyingly, isocyanides, regardless of the steric effect, could engage with thiophenols to give the corresponding adducts in good yields (75–76). Aryl isocyanides however afforded the desired products in low yields under standard reaction conditions (77–78).Open in a separate windowScheme 4Scope of azazoles. Conditions: a disulfides/diselenides (0.15 mmol) or b thiophenols (0.3 mmol), isocyanides (0.6 mmol), azazoles (0.5 mmol), nBu4NBF4 (0.5 mmol), MeCN (6 mL), cloth anode, Pt cathode, undivided cell, constant current = 10 mA, room temperature, N2, 2.25 h. Isolated yield.To evaluate the feasibility of this electrochemical protocol, we monitored the reaction on a 4.5 mmol scale as shown in Scheme 5. Under similar conditions, by prolonging the reaction time to 34 h, a good isolated yield of 72% was obtained, which provided an opportunity for further synthetic manipulations.Open in a separate windowScheme 5Gram-scale synthesis.In order to account for the stereoselectivity of products, theoretical calculations were performed. The result demonstrated that the free energy of the Z-conformer of the product 16 is 2.3 kcal mol−1 smaller than that of the E-conformer.Based on a previously reported mechanistic study14 and these above observations, a synthetically possible mechanism for the electrochemical intermolecular difunctionalization reaction is depicted in Scheme 6. A sulfur radical was formed via single-electron-transfer (SET) reduction of the disulfide or SET oxidation of the thiophenol. Subsequently, the exclusive capture of the S-radical by the isocyano part yields the imine C-radical I. Further SET oxidation of this radical intermediate to the corresponding imine carbocation II, followed by nucleophilic trapping intermolecularly, affords the final isothioureas.Open in a separate windowScheme 6Proposed reaction mechanism.  相似文献   

8.
A reasonable synthesis design by strategically integrating functional group manipulation into the ring system construction resulted in a short, enantioselective, gram-scale total synthesis of (−)-zephyranthine. The concise route includes a catalytic Michael/Michael cascade for the asymmetric synthesis of a penta-substituted cyclohexane with three contiguous stereogenic centers, a remarkable 8-step one-pot operation to easily assemble the zephyranthine tetracyclic skeleton, the regioselective construction of a double bond in the C ring and an asymmetric dihydroxylation. This synthesis is also flexible and paves a potential path to a variety of cyclohexylamine-fused tricyclic or polycyclic alkaloids.

A reasonable synthesis design by strategically integrating functional group manipulation into the ring system construction resulted in a short, enantioselective, gram-scale total synthesis of (−)-zephyranthine.  相似文献   

9.
Herein reported is a strategy for constructing vicinal 4°/3° carbons via reductive Cope rearrangement. Substrates have been designed which exhibit Cope rearrangement kinetic barriers of ∼23 kcal mol−1 with isoenergetic favorability (ΔG ∼ 0). These fluxional/shape-shifting molecules can be driven forward by chemoselective reduction to useful polyfunctionalized building blocks.

Herein reported is a strategy for constructing vicinal 4°/3° carbons via reductive Cope rearrangement.

Constructing sterically congested vicinal quaternary–tertiary carbons (4°/3° carbons) via Cope rearrangement is currently quite limited with only a handful of papers on the subject published over the past 40 years. This stands in stark contrast to the plethora of other methods for establishing sterically congested vicinal carbons.1–5 Central to the challenge are kinetic and thermodynamic issues associated with the transformation. In the simplest sense, Cope rearrangements proceed in the direction that results in highest alkene substitution (Fig. 1).6,7 To forge 4°/3° motifs by Cope rearrangement, additional driving forces must be introduced to reverse the [3,3] directionality and compensate for the energetic penalty associated with the steric and torsional strain of the targeted vicinal 4°/3° motif. With limited reports in all cases, oxy-Cope substrates (Scheme 1, eqn (1)),8–14 divinylcyclopropanes (Scheme 1, eqn (2)),15–20 and vinylidenecyclopropane-based 1,5-dienes21 (Scheme 1, eqn (3)) have demonstrated favourability for constructing vicinal 4°/3° carbons. Malachowski et al. put forth a series of studies on the construction of quaternary centers via Cope rearrangement driven forward by a conjugation event (Scheme 1, eqn (4)).22–25 In their work, a single example related to the construction of vicinal 4°/3° centers was disclosed, though kinetic (180 °C) and thermodynamic (equilibrium mixtures) challenges are also observed.23 And of particular relevance to this work, Wigfield et al. demonstrated that 3,3-dicyano-1,5-dienes with the potential to generate vicinal 4°/3° carbons instead react via an ionic mechanism yielding the less congested products (Scheme 1, eqn (5)).26Open in a separate windowFig. 1Cope equilibrium of 1,1,6-trisubstituted 1,5-dienes.Open in a separate windowScheme 1(A) Cope rearrangements for constructing vicinal 4°/3°-centers (B) this report.Our group has been examining strategies to decrease kinetic barriers and increase the thermodynamic favourability of 3,3-dicyano-1,5-diene-based Cope substrates.27–31 Beyond the simplest, unsubstituted variants, this class of 1,5-diene is not particularly reactive in both a kinetic and thermodynamic sense (e.g.Scheme 1, eqn (5)).26,32 Reactivity issues aside, these substrates are attractive building blocks for two main reasons: (1) they have straightforward accessibility from alkylidenemalononitriles and allylic electrophiles by deconjugative allylic alkylation.33 (2) The 1,5-diene termini are substantially different (malononitrile vs. simple alkene) thus allowing for orthogonal functional group interconversion facilitating target and analogue synthesis.34 Herein we report that a combination of 1,5-diene structural engineering28,31 and reductive conditions (the reductive Cope rearrangement29,30) can result in the synthesis of building blocks containing vicinal gem-dimethyl 4°/3° carbons along with orthogonal malononitrile and styrene functional groups for interconversion (Scheme 1B). On this line, malononitrile can be directly converted to amides34 yielding functionally dense β-gem-dimethylamides, important pharmaceutical scaffolds.35This project began during the Covid-19 pandemic lockdown (ca. March–May 2020). As such, we were not permitted to use our laboratory out of an abundance of caution. We took this opportunity to first computationally investigate a Cope rearrangement that could result in vicinal 4°/3° carbons (Scheme 2). Then, when permitted to safely return to the lab, we would experimentally validate our findings (vide infra). From our previous work, it is known that by adding either a 4-aromatic group28 or a 4-methyl group31 to a 3,3-dicyano-1,5-diene, low barrier (rt – 80 °C) diastereoselective Cope rearrangements can occur. Notably, the 4-substituent was found to destabilize the starting material (weaken the C3–C4 bond, conformationally bias the substrate for [3,3]), and stabilize the product side of the equilibrium via resonance (phenyl group) or hyperconjugation (methyl group). In this study, we modelled substrates 1, 3, and 5 that have variable 4-substitution and would result in vicinal gem-dimethyl- and phenyl-containing 4°/3° carbons upon Cope rearrangement to 2, 4, or 6, respectively. We chose to target this motif due to likely synthetic accessibility from simple starting materials but also because of the important and profound impact that gem-dimethyl groups impart on pharmaceuticals.35 Substrate 1 lacking 4-substitution had an extremely unfavourable kinetic and thermodynamic profile (ΔG = 31.6; ΔG = +5.3 kcal mol−1). When a 4-methyl group was added, the kinetic barrier (ΔG) dropped appreciably to 28.2 kcal mol; however, the thermodynamics were still quite endergonic (ΔG = +4.4 kcal mol−1). Most excitingly, it was uncovered that the 4-phenyl group dramatically impacted the kinetics and thermodynamics: the [3,3] has a barrier of 22.9 kcal mol−1G) and is ∼isoenergetic (ΔG = +0.17 kcal mol−1). Thus, the reaction appears to be fluxional/shape-shifting at room temperature.36–40 For this substrate, we also modelled the dissociative pathway (Scheme 2D). It was found that bond breakage to two allylic radical intermediates is a higher energy process than the concerted transition state (Scheme 2Cvs.Scheme 2D). Specifically, the dissociative pathway was found to be kinetically less favourable (ΔG ∼ 27.6 kcal mol; ΔG = 26.2 kcal mol−1) than the concerted process (ΔG = 22.9 kcal mol−1). While the dissociative pathway is less favourable than the concerted transformation, we surmised that the two-step process becomes accessible at elevated temperature (vide infra). Finally, the ionic pathway was calculated to be significantly higher for this substrate (see the ESI).Open in a separate windowScheme 2Computational analysis of 3,3-dicyano-1,5-diene that in theory could result in vicinal 4°/3° carbons. (A) 4-Unsubstituted 3,3-dicyano-1,5-diene. (B) 4-Methyl 3,3-dicyano-1,5-diene. (C) 4-Phenyl 3,3-dicyano-1,5-diene. (D) The dissociative mechanism for substrate 5 is higher than the closed transition state. (E) visualization of the kinetic- and thermodynamic differences of transformations (A–D).The class of substrate uncovered from our computational investigation could be accessed from γ,γ-dimethyl-alkylidenemalononitrile (7a) and 1,3-diarylallyl electrophiles (such as 8a) by Pd-catalyzed deconjugative allylic alkylation (Scheme 3A).33 As such, model 1,5-diene 5a was prepared to verify the computational results. It was found that upon synthesis of 5a, an inseparable 21 : 79 mixture of 1,5-diene 5a and the 1,5-diene 6a was observed. The predicted ratio of 5a to 6a was 57 : 43 (Scheme 2C). These two results are within the error of the calculations (predicted; slightly endergonic, observed; slightly exergonic). To determine whether the transformation was progressing through the predicted concerted pathway (Scheme 2C) over the dissociative pathway (Scheme 2D), substrate 5b was prepared by an analogous deconjugative allylic alkylation reaction. Similarly, two Cope equilibrium isomers 5b and 6b are observed at room temperature in a 12 : 88 ratio. Upon heating at 100 °C for 3 h, the 1,5-dienes “scramble” (e.g. iso-6b is observed; 0.2 : 1.0 : 1.5 ratio of 5b : 6b : iso-6b) indicating that the dissociative pathway is only accessible at elevated temperature. This is all in good agreement with the calculated kinetics and thermodynamics of this system (Scheme 2).Open in a separate windowScheme 3(A) Observation of fluxional [3,3] and confirmation of calculated predictions. (B) Optimization of a reductive Cope rearrangement protocol for constructing vicinal 4°/3° centers. (C) The Pd-catalyzed deconjugative allylic alkylation must be regioselective.With respect to the synthetic methodology, we aimed to increase the overall efficiency and applicability of the sequence (Scheme 3B). Specifically, we wanted to avoid [3,3] equilibrium mixtures and sensitive/unstable substates and intermediates. It was found that the direct coupling of 7a with diphenylallyl alcohol 9a could take place in the presence of DMAP, Ac2O, and Pd(PPh3)4. When the coupling was complete, methanol and NaBH4 were added to drive the Cope equilibrium forward, yielding the reduced Cope rearrangement product 10a in 76% isolated yield. In terms of practicality and efficiency, this method utilizes diphenylallyl alcohols, which are more stable and synthetically accessible than their respective acetates, and the [3,3] equilibrium mixture can be directly converted dynamically to a single reduced product.With an efficient protocol in hand for constructing malononitrile–styrene-tethered building blocks featuring central vicinal 4°/3° carbons, we next examined the scope of the transformation (Scheme 4). We chose diarylallyl alcohols with the propensity to react regioselectively via an electronic bias (Scheme 3C).41,42 The combination of p-nitrophenyl and phenyl (10b) or p-methoxyphenyl (10c) yielded regioselective outcomes with the electron-deficient arene at the allylic position. This is consistent with the expected regiochemical outcome where the nucleophile reacts preferentially at the α-position and the electrophile reacts at the allylic position bearing the donor-arene (Scheme 3C).41,42 Then, reductive Cope rearrangement occurs to position the electron-deficient arene adjacent to the gem-dimethyl quaternary center. This is an exciting outcome as many pharmaceutically relevant (hetero)arenes are electron deficient. Thus, fluorinated arenes were installed at the allylic position of products 10d–10k. While the phenyl group resulted in poor regioselectivity (1 : 1–3 : 1), the p-methoxyphenyl group enhanced the regiomeric ratios in all cases (3 : 1–15 : 1). The degree of selectivity is correlated with the number and position of fluorine atoms. N-Heterocycles could be incorporated with excellent regioselectivity, generally speaking (10l–10q). For example, 3-chloro-4-pyridyl (10l/10m) groups were installed at the allylic position with >20 : 1 rr. 4-Chloro-3-pyridyl was poorly regioselective (10n), but the combination of 4-trifluomethyl-3-pyridyl/p-methoxyphenyl (10o) gave good regioselectivity of 11 : 1. 2-Pyridyl/p-methoxyphenyl (10q) was also a regioselective combination. We also examined a few other heterocycles including quinoline (10s) and thiazole (10t and 10u) with excellent and modest regioselectivity observed, respectively. As a general trend, when the arenes on the allylic electrophile become less polarized, poor regioselectivity is observed in the Pd-catalyzed allylic alkylation. For example, the combination of p-chlorophenyl and p-methoxyphenyl (10v) or phenyl (10w) yields regioisomeric mixtures of products. This can be circumvented by utilizing symmetric electrophiles (to 10x).Open in a separate windowScheme 4Scope of the 4°/3°-center-generating reductive Cope rearrangement.The phenyl or the p-methoxyphenyl group is necessary to achieve the 4°/3° carbon-generating Cope rearrangement: it functions as an “activator” by lowering the kinetic barrier and increasing thermodynamic favourability. These activating groups can be removed through alkene C Created by potrace 1.16, written by Peter Selinger 2001-2019 C cleavage reactions (e.g. metathesis (Scheme 5) and ozonolysis (Scheme 6B)). In this regard, highly substituted cycloheptenes 11 were prepared by allylation and metathesis (Scheme 4).28,43 The yields were modest to excellent over this two-step sequence. In many cases, where 10 exists as a mixture of regioisomers, the major allylation/RCM products 11 could be chromatographically separated from their minor constituents. As shown in Scheme 6A, the malononitrile can be transformed via oxidative amidation34 to products 12 containing a dense array of pharmaceutically relevant functionalities (amides, gem-dimethyl, fluoroaromatics, and heteroaromatics). Following this transformation, ozonolysis terminated with a NaBH4 quench installs an alcohol moiety on small molecule 13a.Open in a separate windowScheme 5Removal of the “activating group” by ring-closing metathesis.Open in a separate windowScheme 6(A) oxidative amidation of malononitrile. (B) Removal of “activating group” by ozonolysis.These first computational and experimental studies utilizing 3,3-dicyano-1,5-dienes as substrates for constructing vicinal 4°/3° centers sets the stage for much further examination and application. For example, while we focused our efforts on gem-dimethyl-based quaternary carbons, it is likely that other functionality can be installed at this position. For example, while unoptimized, it appears the protocol is reasonably effective at incorporating a piperidine moiety in addition to heteroarenes from the allylic electrophile (7b + 9f → 14a; Scheme 7A). Similar functional group interconversion chemistry as described in Schemes 5 and and66 can thus yield functionally dense building blocks 15 and 16 in good yields.Open in a separate windowScheme 7(A) The construction of 4/3° centres on piperidines. (B) Promoting endergonic [3,3] rearrangements is possible, assuming the [3,3] kinetic barrier is sufficiently low.While the 4,6-diaryl-3,3-dicyano-1,5-dienes offered the most attractive energetic profile (low kinetic barrier, isoenergetic [3,3] equillibrium; Scheme 2C), the 4-methyl analogue is also intriguing to consider as a viable substrate class for reductive Cope rearrangement (Scheme 2B). The challenge here is that the kinetics and thermodynamics are quite unfavourable (not observable by NMR), but potentially not prohibitively so. It is extremely exciting to find that Cope equilibria that are significantly endergonic in the desired, forward direction (e.g.3a to 4a) can be promoted by a related reductive protocol (Scheme 7B). While unoptimized, we were able to isolate product 17 in xx% yield by heating at 90 °C in the presence of Hantzsch ester in DMF.  相似文献   

10.
The Cope rearrangement of 2,3-divinyloxiranes, a rare example of epoxide C–C bond cleavage, results in 4,5-dihydrooxepines which are amenable to hydrolysis, furnishing 1,6-dicarbonyl compounds containing two contiguous stereocenters at the 3- and 4-positions. We employ an Ir-based alkene isomerization catalyst to form the reactive 2,3-divinyloxirane in situ with complete regio- and stereocontrol, which translates into excellent control over the stereochemistry of the resulting oxepines and ultimately to an attractive strategy towards 1,6-dicarbonyl compounds.

Iridium catalyzed alkene isomerization-cope rearrangement of ω-diene epoxide furnishes 3,4-dihydrooxepines. These oxepines are hydrolyzed to diastereomerically pure 1,6-dicarbonyl compound containing two contiguous stereocenters within acyclic system.

1,6-Dicarbonyl compounds are widespread as targets and intermediates in organic synthesis.1 Due to the “dissonant” polarizing effect induced by the two carbonyl groups,2 these motifs are challenging to retrosynthetically disconnect into classical synthons. Unsurprisingly, many approaches toward 1,6-dicarbonyls rely on dimerization of α,β-unsaturated carbonyl compounds (Scheme 1a)3 or oxidative cleavage of substituted cyclohexene derivatives4 which significantly limits the range of possible products. Alternative strategies, such as the ring-opening of donor–acceptor cyclopropanes with enolate nucleophiles, efficiently form the 1,6-dicarbonyl skeleton, albeit with limited substrate scope (Scheme 1b).5 The Cope rearrangement of 1,5-dienes, featuring oxygen functionality in the 3- and 4-positions,6 represents a promising strategy towards 1,6-dicarbonyl compounds but suffers from lack of stereocontrol over the diene substrates, resulting in diastereomeric mixtures of products (Scheme 1c).Open in a separate windowScheme 1Selected approaches towards the formation of 1,6-dicarbonyl compounds and our proposed approach.A conceptually related approach towards the preparation of 1,6-dicarbonyl compounds is through the hydrolysis of 3,4-dihydrooxepines (Scheme 1d), which are in turn generated through the Cope rearrangement of 2,3-divinyloxiranes.7 Such a sigmatropic rearrangement is also noteworthy as a rare example where an epoxide C–C bond is selectively cleaved over the usually more reactive C–O bond. This intriguing rearrangement has been studied but its use in synthesis is scarce, presumably due to difficulties in the stereoselective synthesis and handling of the key divinyl epoxides.In line with our interest in the strategic application of alkene isomerization to generate reactive synthetic intermediates in stereodefined form,8 we posited to form the reactive 2,3-divinyloxiranes in situ, through alkene isomerization9,10 of the simpler allyl epoxides, which are accessible in enantiomerically enriched form.11 Such a strategy might greatly facilitate access to these intermediates and therefore uncover a synthetically attractive route toward 1,6-dicarbonyl compounds featuring two contiguous stereocenters.With this idea in mind, we first explored the isomerization and subsequent Cope rearrangement of allyl-vinyl epoxides 1 (Scheme 2). To induce isomerization, we employed a cationic iridium-based catalytic system,12 which is known to reliably isomerize alkenes with high degrees of regio- and stereocontrol.13Open in a separate windowScheme 2Substrate scope for the tandem iridium-catalyzed alkene isomerization-Cope rearrangement of allyl-vinyl epoxides.In line with our expectations, our model substrate 1a (R2 = R3 = H, R4 = Me, R5 = CO2Et) was smoothly isomerized at 65 °C in the presence of 1.5 mol% of Ir dimer to obtain the corresponding divinyl epoxide with a complete E-selectivity. With suitable conditions for alkene isomerization in hand, we exposed substrate 1a to the Ir-based catalytic system at 120 °C and were equally pleased to observe the 4,5-dihydrooxepine product 2a, resulting from the tandem isomerization-Cope rearrangement as a single diastereoisomer in 81% yield. We proceeded to test the generality of our protocol with respect to different alkene and epoxide substitution patterns. Pleasingly, product 2b was generated with complete stereoselectivity, showcasing the compatibility of the reaction conditions with potentially labile tertiary stereocenters α to the ester group. We then wondered whether the anti-diastereomer could be accessed starting from the corresponding cis allyl-vinyl epoxide. Indeed, in line with the known stereospecific behavior of the Cope rearrangement, we obtained the complementary diastereomer 2c. Turning our attention to more highly substituted epoxides, we were pleased to observe the formation of dihydrooxepines 2d and 2e, which correspond to 1,6-keto-aldehyde and diketone products, respectively. Substrate 1f (R2 = R4 = R5 = H, R3 = Ph), which features an unactivated vinyl group, also underwent the rearrangement, demonstrating that an activated alkenyl group is not required for a successful outcome. Similarly, product 2g featuring two alkyl groups is also generated, with high diastereoselectivity albeit in moderate yield. Products featuring ethyl and methyl ester 2h, 2i could also be obtained in good yields and diastereoselectivity. We next tested substrate 1j (R2 = Me, R3 = Ph, R4 = CH2CH2Ph, R5 = H), as a geometric-mixture of the double bond (E : Z = 1.1 : 1) and in accordance with the stereospecificity of the process, the oxepine 2j was obtained as a mixture of two diastereomers with the same ratio. Disappointingly, substrate 1k did not undergo isomerization, presumably due to the Lewis basic nature of the ketone, likely poisoning the Ir-catalyst.During our study, we noticed that allyl-vinyl epoxides bearing electron donating groups on the vinyl moiety tend to decompose during purification by column chromatography on silica gel. This obstacle further motivated us to explore diallyl epoxides 3 as substrates, where the reactive divinyl epoxide would be generated by isomerization of both allyl fragments. Notably, these diallyl epoxides are much more stable compared to their vinyl counterparts and can be readily prepared in two steps from simple alkynes.14 To our delight, diallyl epoxide 3a (R = CH2OMe) smoothly underwent the double isomerization-Cope rearrangement cascade at 140 °C, furnishing oxepine 2l with impressive yield and diastereoselectivity (Scheme 3). The use of alkene isomerization to form the reactive divinyl epoxide in situ avoids the isolation of the unstable divinyl epoxide, while controlling the stereochemistry of both double bonds, particularly not trivial to achieve using classical olefination reactions. Products 2m and 2n feature ester and silyl groups, highlighting the functional group tolerance of the catalytic system.Open in a separate windowScheme 3Substrate scope for tandem iridium-catalyzed double alkene isomerization-Cope rearrangement of diallyl epoxides.Our next objective was to hydrolyze the diastereomerically pure oxepines obtained through the rearrangement in a stereoretentive fashion, revealing the acyclic 1,6-dicarbonyl motif. Pleasingly, diversely substituted oxepines 2 underwent smooth hydrolysis either using 5 mol% of Pd(MeCN)2Cl215 at 50 °C or an acidic aqueous solution to form 1,6-dicarbonyls 4 in diastereomerically pure form (Scheme 4).16 Dicarbonyl products featuring labile tertiary centers 4a and 4b are formed under these conditions with excellent diastereoselectivities and yields. Without surprise, oxepine 2f (R2 = R4 = R5 = H, R3 = Ph) furnished the keto-substituted product 4c in good yield. The relative stereochemistry of 4b was unambiguously confirmed by single crystal X-ray diffraction analysis of the corresponding carboxylic acid 7 (Scheme 4b).17 The reaction is scalable to ½ gram of substrate and could be performed in a single-pot operation without isolation of the intermediate oxepine (Scheme 4b). By using this approach, 1h provides 4b in 61% yield as a single diastereomer, underlining the synthetic potential and efficiency of this method.Open in a separate windowScheme 4Hydrolysis of oxepines and one-pot sequence.  相似文献   

11.
β-Lactam compounds play a key role in medicinal chemistry, specifically as the most important class of antibiotics. Here, we report a novel one-step approach for the synthesis of α-(trifluoromethyl)-β-lactams and related products from fluorinated olefins, anilines and CO. Utilization of an advanced palladium catalyst system with the Ruphos ligand allows for selective cycloaminocarbonylations to give diverse fluorinated β-lactams in high yields.

β-Lactam compounds play a key role in medicinal chemistry, specifically as the most important class of antibiotics.  相似文献   

12.
We report herein catalytic asymmetric transformations of racemic α-borylmethyl-(E)-crotylboronate. The Brønsted acid-catalyzed kinetic resolution–allylboration reaction sequence of the racemic reagent gave (Z)-δ-hydroxymethyl-anti-homoallylic alcohols with high Z-selectivities and enantioselectivities upon oxidative workup. In parallel, enantioconvergent pathways were utilized to synthesize chiral nonracemic 1,5-diols and α,β-unsaturated aldehydes with excellent optical purity.

We report herein catalytic asymmetric transformations of racemic α-borylmethyl-(E)-crotylboronate.  相似文献   

13.
Catalytic asymmetric variants for functional group transformations based on carbon–carbon bond activation still remain elusive. Herein we present an unprecedented palladium-catalyzed (3 + 2) spiro-annulation merging C(sp2)–C(sp2) σ bond activation and click desymmetrization to form synthetically versatile and value-added oxaspiro products. The operationally straightforward and enantioselective palladium-catalyzed atom-economic annulation process exploits a TADDOL-derived bulky P-ligand bearing a large cavity to control enantioselective spiro-annulation that converts cyclopropenones and cyclic 1,3-diketones into chiral oxaspiro cyclopentenone–lactone scaffolds with good diastereo- and enantio-selectivity. The click-like reaction is a successful methodology with a facile construction of two vicinal carbon quaternary stereocenters and can be used to deliver additional stereocenters during late-state functionalization for the synthesis of highly functionalized or more complex molecules.

An unprecedented palladium-catalyzed (3 + 2) spiro-annulation merging C–C bond activation and desymmetrization was developed for the enantioselective construction of synthetically versatile and value-added oxaspiro products with up to 95% ee.  相似文献   

14.
Silicon-based cross-coupling has been recognized as one of the most reliable alternatives for constructing carbon–carbon bonds. However, the employment of such reaction as an efficient ring expansion strategy for silacycle synthesis is comparatively little known. Herein, we develop the first intermolecular silacyclization strategy involving Pd-catalyzed silicon-based C(sp2)–C(sp3) cross-coupling. This method allows the modular assembly of a vast array of structurally novel and interesting sila-benzo[b]oxepines with good functional group tolerance. The key to success for this reaction is that silicon atoms have a stronger affinity for oxygen nucleophiles than carbon nucleophiles, and silacyclobutanes (SCBs) have inherent ring-strain-release Lewis acidity.

Herein, we develop the first silacyclization between 2-halophenols and SCBs, which allows the modular assembly of sila-benzo[b]oxepines with good functional group tolerance and can be applied for the late-stage modification of biologically active molecules.  相似文献   

15.
A nickel/dppf catalyst system was found to successfully achieve the Suzuki–Miyaura cross-coupling reactions of 3- and 4-chloropyridine and of 6-chloroquinoline but not of 2-chloropyridine or of other α-halo-N-heterocycles. Further investigations revealed that chloropyridines undergo rapid oxidative addition to [Ni(COD)(dppf)] but that α-halo-N-heterocycles lead to the formation of stable dimeric nickel species that are catalytically inactive in Suzuki–Miyaura cross-coupling reactions. However, the corresponding Kumada–Tamao–Corriu reactions all proceed readily, which is attributed to more rapid transmetalation of Grignard reagents.

Nickel complexes with a dppf ligand can form inactive dinickel(ii) complexes during Suzuki–Miyaura cross-coupling reactions. However, these complexes can react with Grignard reagents in Kumada–Tamao–Corriu cross-coupling reactions.  相似文献   

16.
Stimuli-responsive metal–organic frameworks (MOFs) exhibit dynamic, and typically reversible, structural changes upon exposure to external stimuli. This process often induces drastic changes in their adsorption properties. Herein, we present a stimuli-responsive MOF, 1·[CuCl], that shows temperature dependent switching from a rigid to flexible phase. This conversion is associated with a dramatic reversible change in the gas adsorption properties, from Type-I to S-shaped isotherms. The structural transition is facilitated by a novel mechanism that involves both a change in coordination number (3 to 2) and geometry (trigonal planar to linear) of the post-synthetically added Cu(i) ion. This process serves to ‘unlock’ the framework rigidity imposed by metal chelation of the bis-pyrazolyl groups and realises the intrinsic flexibility of the organic link.

Stimuli-responsive metal–organic frameworks (MOFs) exhibit dynamic structural changes upon exposure to external stimuli. Here the coordination geometry of a post-synthetically added metal ion drastically changes the adsorption properties.  相似文献   

17.
A new polynorbornene skeleton has been found that contains bicyclic norbornane units and cyclohexenyl methyl linkages. The polymers have been synthesized using a nickel catalyst in the presence of a controlled amount of ligands with low or moderate coordination ability. The backbone structure is the result of a vinylic addition polymerization, via sequential insertions of norbornene into a Ni–C bond (bicyclic units) combined with an unusual ring opening of the norbornene structure by a β-C elimination (cyclohexenyl methyl units) to give a new Ni–C(alkyl) bond that continues the polymerization. The ring opening events are favored when the rate of propagation of the vinylic addition polymerization decreases, and this can be modulated by making the coordination of norbornene to the metal center less favorable using additional ligands.

A new polynorbornene skeleton that contains a mixture of bicyclic norbornane units and cyclohexenylmethyl moieties can be obtained using a nickel catalyst.  相似文献   

18.
Correction for ‘HCOOH disproportionation to MeOH promoted by molybdenum PNP complexes’ by Elisabetta Alberico et al., Chem. Sci., 2021, 12, 13101–13119, DOI: 10.1039/D1SC04181A.

The authors regret that in Scheme 2 of the original article, complexes 7 and 8 were drawn incorrectly. The solid-state structure of both complexes, as established by X-ray analysis, had been previously reported (7 (ref. 1) and 8 (ref. 2)). In both complexes, the PNP ligand adopts a facial tridentate coordination to molybdenum and not a meridional one, as erroneously shown in Scheme 2 of the original article. The correct ligand arrangements in the metal coordination sphere for complexes 7 and 8 are reported below in Scheme 1.Open in a separate windowScheme 1Mo–PNP complexes tested in the dehydrogenation of HCOOH.Open in a separate windowScheme 2Proposed mechanisms for HCOOH dehydrogenation (red), disproportionation (blue) and decarbonylation (green) promoted by 5. Evidence for the formation of a Mo(iv) species is based on the detection by NMR of H2 and HD following addition of DCOOD to Mo(H)n species (see Fig. SI-31).Please note that complex 8 is also shown in Scheme 4 in the proposed mechanism for HCOOH decarbonylation (green part), and in Fig. 2. In both cases, the correct structure for complex 8 is reported below in Scheme 2 and Fig. 1.Open in a separate windowFig. 1 1H and 31P{1H} NMR spectra of a toluene-d8 solution of {Mo(CH3CN)(CO)2(HN[(CH2CH2P)(CH(CH3)2)2]2} 4 in the presence of 100 equivalents of HCOOH ([Mo] 10−2 M, [HCOOH] 1 M), before (a) and after heating at 90 °C for 1 hour (b). Spectra were recorded at room temperature. Signals related to complex 5 are marked by red dots.Open in a separate windowFig. 2Molecular structure of {Mo(CO)2(CH3CN)[CH3N(CH2CH2P(CH(CH3)2)2)2]} 9. Displacement ellipsoids correspond to 30% probability. Hydrogen atoms are omitted for clarity.Furthermore, a mistake was made in the caption of Fig. 6, showing the solid-state structure of complex 9: the latter has been incorrectly described as a Mo(i)-hydride species {Mo(H)(CO)2(CH3CN)[CH3N(CH2CH2P(CH(CH3)2)2)2]}. The correct formula, in agreement with the X-ray structure, is as follows and is shown above in Fig. 2: {Mo(CO)2(CH3CN)[CH3N(CH2CH2P(CH(CH3)2)2)2]}.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

19.
A chelation-assisted oxidative addition of gold(i) into the C–C bond of biphenylene is reported here. The presence of a coordinating group (pyridine, phosphine) in the biphenylene unit enabled the use of readily available gold(i) halide precursors providing a new, straightforward entry towards cyclometalated (N^C^C)- and (P^C)-gold(iii) complexes. Our study, combining spectroscopic and crystallographic data with DFT calculations, showcases the importance of neighboring, weakly coordinating groups towards the successful activation of strained C–C bonds by gold.

Pyridine and phosphine directing groups promote the C–C activation of biphenylene by readily available gold(i) halides rendering a new entry to (N^C^C)- and (P^C)-gold(iii) species.

Activation of C–C bonds by transition metals is challenging given their inertness and ubiquitous presence alongside competing C–H bonds.1 Both the intrinsic steric hindrance as well as the highly directional character of the p orbitals involved in the σC–C bond impose a high kinetic barrier for this type of processes.2,3 Biphenylene, a stable antiaromatic system featuring two benzene rings connected via a four-membered cycle, has found widespread application in the study of C–C bond activation. Since the seminal report from Eisch et al. on the oxidative addition of a nickel(0) complex into the C–C bond of biphenylene,4 several other late transition metals have been successfully applied in this context.5 Interestingly, despite the general reluctance of gold(i) to undergo oxidative addition,6 its oxidative insertion into the C–C bond of biphenylene was demonstrated in two consecutive reports by the groups of Toste7a and Bourissou,7b respectively. The high energy barrier associated with the oxidation of gold could be overcome by the utilization of gold(i) precursors bearing ligands that exhibit either a strongly electron-donating character (e.g. IPr = [1,3-bis(2,6-diisopropylphenyl)imidazole-2-ylidene])7a or small bite angles (e.g. DPCb = diphosphino-carborane).7b,8 In line with these two approaches, more sophisticated bidentate (N^C)- and (P^N)-ligated gold(i) complexes have also been shown to aid the activation of biphenylene at ambient temperature (Scheme 1a).7c,dOpen in a separate windowScheme 1(a) Previous reports on oxidative addition of ligated gold(i) precursors onto biphenylene. (b) This work: pyridine- and phosphine-directed C–C bond activation of biphenylene by commercially available gold(i) halides.In this context, we hypothesized that the oxidative insertion of gold(i) into the C–C bond of biphenylene could be facilitated by the presence of a neighboring chelating group.9 This approach would not only circumvent the need for gold(i) precursors featuring strong σ-donor or highly tailored bidentate ligands but also offer a de novo entry towards interesting, less explored ligand templates. However, recent work by Breher and co-workers showcased the difficulty of achieving such a transformation.10Herein, we report the oxidative insertion of readily available gold(i) halide precursors into the C–C bond of biphenylene. The appendage of both pyridine and phosphine donors in close proximity to the σC–C bond bridging the two aromatic rings provides additional stabilization to the metal center and results in a de novo entry to cyclometalated (N^C^C)- and (P^C)gold(iii) complexes (Scheme 1b).Our study commenced with the preparation of 5-chloro-1-pyridino-biphenylene system 2via Pd-catalyzed Suzuki cross coupling reaction between 2-bromo-3-methylpyridine and 2-(5-chlorobiphenylen-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 1 (Scheme 2).11 To our delight, the reaction of 2 with gold(i) iodide in toluene at 130 °C furnished complex κ3-(N^C^C)Au(iii)–I 3 in 60% yield.12,13 Complex 3 was isolated as yellow plate-type crystals from the reaction mixture and its molecular structure was unambiguously assigned by NMR spectroscopy, high-resolution mass spectrometry (HR-MS) and crystallographic analysis. Complex 3 exhibits the expected square-planar geometry around the metal center, with a Au–I bond length of 2.6558(3) Å.14 The choice of a neutral weakly bound gold(i)-iodide precursor is key for a successful reaction outcome: similar reactions in the presence of [(NHC)AuCl + AgSbF6] failed to deliver the desired biscyclometalation adducts, as reported by Breher et al. in ref. 10. The oxidative insertion of gold(i) iodide into the four-membered ring of pyridino-substituted biphenylene provides a novel and synthetically efficient entry to κ3-(N^C^C)gold(iii) halides. These species have recently found widespread application as precursors for the characterization of highly labile, catalytically relevant gold(iii) intermediates,15ad as well as for the preparation of highly efficient emitters in OLEDs.15eg Previous synthetic routes towards these attractive biscyclometalated gold(iii) systems involved microwave-assisted double C–H functionalization reactions that typically proceed with low to moderate yields.15aOpen in a separate windowScheme 2Synthesis of complex 3via oxidative addition of Au(i) into the C–C bond of pyridine-substituted biphenylene. X-ray structures of complex 3 with atoms drawn using 50% probability ellipsoids. Hydrogen atoms have been omitted for clarity. Additional selected bond distances [Å]: N–Au = 2.126(2), C1–Au = 1.973(2), C2–Au = 2.025(2), Au–I = 2.6558(3) and bond angles [deg]: N–Au–I = 99.25(6), N–Au–C1 = 79.82(9), C1–Au–C2 = 81.2(1), C2–Au–I = 99.73(8). For experimental details, see ESI.Encouraged by the successful results obtained with the pyridine-substituted biphenylene and considering the prominent use of phosphines in gold chemistry,6,16 we wondered whether the same reactivity would be observed for a P-containing system. To this end, both adamantyl- and tert-butyl-substituted phosphines were appended in C1 position of the biphenylene motif. Starting from 5-chlorobiphenylene-1-carbaldehyde 4, phosphine-substituted biphenylenes 5a and 5b could be accessed in 3 steps (aldehyde reduction to the corresponding alcohol, Appel reaction and nucleophilic displacement of the corresponding benzylic halide) in 64 and 57% overall yields, respectively.13 The reactions of 5a and 5b with commercially available gold(i) halides (Me2SAuCl and AuI) furnished the corresponding mononuclear complexes 7a–b and 8a–b, respectively (Scheme 3).13 All these complexes were fully characterized and the structures of 7a, 7b and 8a were unambiguously characterized by X-ray diffraction analysis.13 Interestingly, the nature of the halide has a clear effect on the chemical shift of the phosphine ligand so that a Δδ of ca. 5 ppm can be observed in the 31P NMR spectra of 7a–b (Au–Cl) compared to 8a–b (Au–I), the latter being the more deshielded. The Au–X bond length is also impacted, with a longer Au–I distance (2.5608(1) Å for 8a) compared to that measured in the Au–Cl analogue (2.2941(7) Å for 7a) (Δd = 0.27 Å).13Open in a separate windowScheme 3Synthesis and reactivity of complexes 7a–b, 8a–b, 9 and 10. X-ray structure of complexes 11b, 12 and 14 with atoms drawn using 50% probability ellipsoids. Hydrogen atoms have been omitted for clarity. For experimental details and X-ray structures see ESI.Despite numerous attempts to promote the C–C activation in these complexes,10,13 all reactions resulted in the formation of highly stable cationic species 11a–b and 12, which could be easily isolated from the reaction media. In the case of cationic mononuclear-gold(i) complexes 11, a ligand scrambling reaction in which the chloride ligand is replaced by a phosphine in the absence of a scavenger, a process previously described for gold(i) species, can be used to justify the reaction outcome.17 The formation of dinuclear gold complex 12 can be ascribed to the combination of a strong aurophilic interaction between the two gold centers (Au–Au = 2.8874(4) Å) and the stabilizing η2-coordination of the metal center to the aromatic ring of biphenylene. Similar η2-coordinated gold(i) complexes have been reported but, to the best of our knowledge, only as mononuclear species.18Taking into consideration the observed geometry of complexes 7a–b in the solid state,13 the facile formation of stable cationic species 11 and 12 and the lack of reactivity of the gold(i) iodides 8a–b, we hypothesized that the free rotation around the C–P bond was probably restricted, placing the gold(i) center away from the biphenylene system and thus preventing the desired oxidative insertion reaction. To overcome this problem, we set out to elongate the arm bearing the phosphine unit with an additional methylene group, introduced via a Wittig reaction from compound 4 to yield ligand 6, prepared in 4 steps in 27% overall yield. Coordination with Me2SAuCl and AuI resulted in gold(i) complexes 9 and 10, respectively (Scheme 3). The structure of 9 was unambiguously assigned by X-ray diffraction analysis and a similar environment around the metal center to that determined for complex 7a was observed for this complex.13With complexes 9 and 10 in hand, we explored their reactivity towards C–C activation of the four-membered ring of biphenylene.19 After chloride abstraction and upon heating at 100 °C for 5 hours, ring opening of the biphenylene system was observed for complex 9. Interestingly, formation of mono-cyclometalated adduct 13 was exclusively observed (the structure of 13 was confirmed by 1H, 13C, 31P, 19F, 11B and 2D NMR spectroscopy and HR-MS).13 The solvent appears to play a major role in this process, as performing the reaction in non-chlorinated solvents resulted in stable cationic complexes similar to 11.13,20,21 The presence of adventitious water is likely responsible for the formation of the monocyclometalated (P^C)gold(iii) complex 13 as when the reaction was carried out in C2H4Cl2 previously treated with D2O, the corresponding deuterated adduct 13-d could be detected in the reaction media. These results showcase the difficulties associated with the biscyclometalation for P-based complexes as well as the labile nature of the expected biscyclometalated adducts. Interestingly though, these processes can be seen as a de novo entry towards relatively underexplored (P^C)gold(iii) species.22The C–C activation was further confirmed by X-ray diffraction analysis of the phosphonium salt 14, which arise from the reductive elimination at the gold(iii) center in 13 upon exchange of the BF4 counter-anion with the weakly coordinating sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaBArF).13,23 The phosphorus atom is four-coordinate, with weak bonding observed to the distant counter-anion and a distorted tetrahedral geometry (C1–P–C2 = 95.05(17), C2–P–C3 = 112.1(1), C3–P–C4 = 116.6(1), C4–P–C1 = 107.4(2) deg). These results represent the third example in which the C(sp2)–P bond reductive elimination at gold(iii) has been reported.24Further, it is important to note that, in contrast to the reactivity observed for the pyridine-substituted biphenylene, neither P-coordinated gold(i) iodo complexes 8a, 8b nor 10 reacted to give cyclometalated products despite prolonged heating, which highlights the need for highly reactive cationized gold(i) species to undergo oxidative addition when phosphine ligands are flanking the C–C bond.13To get a deeper understanding on the observed differences in reactivity for the N- vs. P-based directing groups, ground- and transition-state structures for the oxidative insertion of gold(i) halides in C1-substituted biphenylenes were computed by DFT calculations. The reactions of Py-substituted 2 with AuI to give 3 (I) and those of P-substituted 7a (II) and 9 (III) featuring the cationization of the gold(i) species were chosen as models for comparative purposes with the experimental conditions (Fig. 1 and S1–S10 in the ESI).25–27 The computed activation energies for the three processes are in good agreement with the experimental data. The pyridine-substituted biphenylene I exhibits the lowest activation barrier for the oxidative insertion process (ΔG = 34.4 kcal mol−1). The reaction on the phosphine-substituted derivatives II and III proved to be, after cationization of the corresponding gold(i) halide complexes (II-BF4, III-BF4) higher in energy (ΔG = 39.6 and 46.3 kcal mol−1 respectively), although the obtained values do not rule out the feasibility of the C–C activation process. The transition state between I and I′ exhibits several interesting geometrical features: (a) the biphenylene is significantly bent, (b) the cleavage of the C–C bond is well advanced (dC–C = 1.898 Å in TSIvs. dC–C = 1.504 Å in I), and (c) the two C and the I atoms form a Y-shape around gold with minimal coordination from the pyridine (dN–Au = 2.742 Å in TSIvs. dN–Au = 2.093 Å in I and 2.157 Å in I′, respectively). The transition-state structures found for the P-based ligands (TSII and TSIII) also show an elongation of the C–C bond and display a bent biphenylene. However, much shorter P–Au distances (dP–Au = 2.330 Å for TSII and 2.314 Å for TSIII) can be observed compared to the pyridine-based system, as expected due to the steric and electronic differences between these two coordinating groups. Analogously, longer C–Au distances were also found for the P-based systems (dC1–Au = 2.152 Å for TSIvs. 2.235 Å and 2.204 Å for TSII and TSIII; dC2–Au = 2.143 Å for TSIvs. 2.219 Å and 2.162 Å for TSII and TSIII), with a larger deviation of square planarity for Au in TSIII compared to TSII.28,29 These results suggest that, provided the appropriate distance to the C–C bond is in place, the strong coordination of phosphorous to the gold(i) center does not prevent the C–C activation of biphenylene but other reactions (i.e. formation of diphosphine gold(i) cationic species, protodemetalation) can outcompete the expected biscyclometalation process. In contrast, a weaker donor such as pyridine offers a suitable balance bringing the gold in close proximity to the C–C bond and enables both the oxidative cleavage as well as the formation of the double metalation product.Open in a separate windowFig. 1Energy profile (ΔG and ΔG in kcal mol−1), optimized structures, transition states computed at the IEFPCM (toluene/1,2-dichloroethane)-B3PW91/DEF2QZVPP(Au,I)/6-31++G(d,p)(other atoms) level of theory for the C–C activation of biphenylene with gold(i) iodide from I and gold(i) cationic from II and III. Computed structures of the transition states (TSI, TSII and TSIII) and table summarizing relevant distances.  相似文献   

20.
β-Difluoroalkylborons, featuring functionally important CF2 moiety and synthetically valuable boron group, have great synthetic potential while remaining synthetically challenging. Herein we report a hypervalent iodine-mediated oxidative gem-difluorination strategy to realize the construction of gem-difluorinated alkylborons via an unusual 1,2-hydrogen migration event, in which the (N-methyliminodiacetyl) boronate (BMIDA) motif is responsible for the high regio- and chemoselectivity. The protocol provides facile access to a broad range of β-difluoroalkylborons under rather mild conditions. The value of these products was demonstrated by further transformations of the boryl group into other valuable functional groups, providing a wide range of difluorine-containing molecules.

A hypervalent iodine-mediated gem-difluorination allows the facile synthesis of β-difluoroalkylborons. An unusual 1,2-hydrogen migration, triggered by boron substitution, is involved.

Organofluorine compounds have been widely applied in medicinal chemistry and materials science.1ad In particular, the gem-difluoro moiety featuring unique steric and electronic properties can act as a chemically inert isostere of a variety of polar functional groups.2ac Therefore, the construction of gem-difluoro-containing compounds has received considerable attention in recent years. Efficient methods including deoxyfluorination of carbonyl compounds,3a,b photoredox difluorination,4 radical difluorination,5 and cross-coupling reactions with suitable CF2 carriers6af are well developed. Alternatively, iodoarene-mediated oxidative difluorination reactions provide valuable access to these motifs by using simple alkenes as starting materials.7ai Previously, these reactions were generally associated with a 1,2-aryl or 1,2-alkyl migration (Scheme 1a).7af Recent developments also allowed the use of heteroatoms as migrating groups, thereby furnishing gem-difluoro compounds equipped with easily transformable functional groups (Scheme 1b). In this regard, Bi and coworkers reported an elegant 1,2-azide migrative gem-difluorination of α-vinyl azides, enabling the synthesis of a broad range of novel β-difluorinated alkyl azides.7g Jacobsen developed an iodoarene-catalyzed synthesis of gem-difluorinated aliphatic bromides featuring 1,2-bromo migration with high enantioselectivity.7h Almost at the same time, research work from our group demonstrated that not only bromo, but also chloro and iodo could serve as viable migrating groups.7iOpen in a separate windowScheme 1Hypervalent iodine-mediated β-difluoroalkylboron synthesis.We have been devoted to developing new methodologies for the assembly of boron-containing building blocks by using easily accessible and stable MIDA (N-methyliminodiacetyl) boronates8ac as starting materials.9ae Recently, we realized a hypervalent iodine-mediated oxidative difluorination of aryl-substituted alkenyl MIDA boronates.9d Depending on the substitution patterns, the reaction could lead to the synthesis of either α- or β-difluoroalkylborons via 1,2-aryl migration (Scheme 1c). Recently, with alkyl-substituted branched alkenyl MIDA boronates, Szabó and Himo observed an interesting bora-Wagner–Meerwein rearrangement, furnishing β-difluorinated alkylboronates with broader product diversity (Scheme 1d).10 While extending the scope of our previous work,9d we found that the use of linear alkyl-substituted alkenyl MIDA boronates also delivers β-difluoroalkylboron products. Intriguingly, instead of an alkyl- or boryl-migration, an unusual 1,2-hydrogen shift takes place. It should be noted that internal inactivated alkenes typically deliver the 1,2-difluorinated products, with no rearrangement taking place.11ad Herein, we disclose our detailed study of our second generation of β-difluoroalkylborons synthesis (Scheme 1e). The starting linear 1,2-disubstituted alkyl-substituted alkenyl MIDA boronates, unlike the branched ones,10 could be readily prepared via a two-step sequence consisting of hydroborylation of the terminal alkyne and a subsequent ligand exchange with N-methyliminodiacetic acid. This intriguing 1,2-H shift was found to be closely related to the boron substitution, probably driven thermodynamically by the formation of the β-carbon cation stabilized by a σ(C–B) bond via hyperconjugation.12adTo start, we employed benzyl-substituted alkenyl MIDA boronate 1a as a model substrate (9d the use of F sources such as CsF, AgF and Et3N·HF in association with PhI(OAc)2 (PIDA) as the oxidant and DCM as the solvent led to no reaction (entries 1 to 3). The use of Py·HF (20 equiv) successfully provided β-difluorinated alkylboronate 2a, derived from an unusual 1,2-hydrogen migration, in 39% yield (entry 4). By simply increasing the loading of Py·HF to 40 equivalents, a higher conversion and thus an improved yield of 61% was obtained (entry 5). No further improvement was observed by using a large excess of Py·HF (100 equiv) (entry 6). Other hypervalent iodine oxidants such as PhIO or PIFA were also effective but resulted in reduced yields (entries 7 and 8). A brief survey of other solvents revealed that the original DCM was the optimal one (entries 9 and 10).Optimization of reaction conditions
EntryF (equiv)OxidantSolventYield (%)
1CsF (2.0)PIDADCM0
2AgF (2.0)PIDADCM0
3Et3N·HF (40.0)PIDADCM0
4Py·HF (20.0)PIDADCM39
5 Py·HF (40.0) PIDA DCM 61
6Py·HF (100.0)PIDADCM55
7Py·HF (40.0)PIFADCM52
8Py·HF (40.0)PhIODCM26
9Py·HF (40.0)PIDADCE49
10Py·HF (40.0)PIDAToluene46
Open in a separate windowWith the optimized reaction conditions in hand, we set out to investigate the scope and limitation of this gem-difluorination reaction. The reaction of a series of E-type 1,2-disubstituted alkenyl MIDA boronates were first examined. As shown in Scheme 2, the reaction of substrates with primary alkyl (1b, 1e–g), secondary alkyl (1c, 1d), or benzyl (1h–k) groups proceeded efficiently to give the corresponding gem-difluorinated alkylboronates in moderate to good yields. Halides (1i–k, 1m) and cyano (1l) were well tolerated in this reaction. Of note, cyclic alkene 1n is also a viable substrate, affording an interesting gem-difluorinated cyclohexane product (2n).Open in a separate windowScheme 2Scope of 1,2-H migratory gem-difluorinations. a 4 h. b PIFA was used.To define the scope further, the substrates with Z configuration were also employed under the standard reaction conditions (eqn (1) and (2)). The same type of products were isolated with comparable efficiency, suggesting that the reaction outcome is independent of the substrate configuration and substrates with Z configuration also have a profound aptitude of 1,2-hydrogen migration. Nevertheless, the reaction of t-butyl substituted alkenyl MIDA boronate (1p) delivered a normal 1,2-difluorinated alkylboron product (eqn (3)). The 1,2-hydrogen migration was completely suppressed probably due to unfavorable steric perturbation. With an additional alkyl substituent introduced, a 1,2-alkyl migrated product was formed as expected (eqn (4)).1The gem-difluorination protocol was amenable to gram-scale synthesis of 2a (Scheme 3, 8 mmol scale of 1a, 1.24 g, 50%). To assess the synthetic utility of the resulting β-difluorinated alkylborons, transformations of the C–B bond were carried out (Scheme 3). Ligand exchange of 2a furnished the corresponding pinacol boronic ester 4 without difficulty, which could be ligated with electron-rich aromatics to obtain 5 and 6 in moderate yields. On the other hand, 2a could be oxidized with high efficiency to alcohol 7 using H2O2/NaOH. The hydroxyl group of 7 could then be converted to bromide 8 or triflate 9. Both serve as useful electrophiles that can undergo intermolecular SN2 substitution with diverse nitrogen- (10, 13), oxygen- (14), phosphorus- (11) and sulfur-centered (12) nucleophiles.Open in a separate windowScheme 3Product derivatizations. PMB = p-methoxyphenyl.To gain insight into the reaction mechanism, preliminary mechanistic studies were conducted. The reaction employing deuterated alkenyl MIDA boronate [D]-1a efficiently afforded difluorinated product [D]-2a in 72% isolated yield, clearly demonstrating that 1,2-H migration occurred (Scheme 4a). However, when the MIDA boronate moiety was replaced with a methyl group (15), no difluorinated product (derived from 1,2-migration) was detected at all, suggesting an indispensable role of boron for promoting the 1,2-migration event (Scheme 4b). Also, with a Bpin congener of 1a, the reaction led to large decomposition of the starting material, with no desired product being formed (Scheme 4b).Open in a separate windowScheme 4Mechanistic studies and proposals.Based on the literature precedent and these experiments, a possible reaction mechanism is proposed in Scheme 4c. With linear alkenyl MIDA boronates, the initial coordination of the double bond to an iodium ion triggered a regioselective fluoroiodination to deliver intermediate B. The regioselectivity could arise from an electron-donating inductive effect from boron due to its low electronegativity, consistent with previous observations.13a,b Thereafter, a 1,2-hydrogen shift, rather than the typical direct fluoride substitution of the C–I bond, provides carbon cation C. The formation of a hyperconjugatively stabilized cation is believed to be the driving force for this event.12ad The trapping of this cation finally forms the product.In conclusion, we demonstrated herein our second generation of β-difluoroalkylboron synthesis via oxidative difluorination of easily accessible linear 1,2-disubstituted alkenyl MIDA boronates. An unexpected 1,2-hydrogen migration was observed, which was found to be triggered by a MIDA boron substitution. Mild reaction conditions, moderate to good yields and excellent regioselectivity were achieved. The applications of these products allowed the facile preparation of a wide range of gem-difluorinated molecules by further transformations of the boryl group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号