首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 75 毫秒
1.
甲基紫硫酸软骨素共振瑞利散射光谱及其应用   总被引:1,自引:1,他引:1  
在Britton-Robinson缓冲介质(pH9.37)中硫酸软骨素与甲基紫反应形成离子缔合物时,共振瑞利散射(RRS)强度会明显增强,其最大RRS峰位于505和661 nm处。本文对反应的最佳条件、影响因素、硫酸软骨素浓度与RRS强度的关系进行了研究,建立起一种快速、简便、灵敏的测定硫酸软骨素的方法。本法在661和505 nm测定波长处的线性范围均为:0.15~0.90 mg/L,其检出限分别为0.019 mg/L(505 nm)和0.043mg/L(661 nm)。该法应用于针剂中硫酸软骨素的测定,结果满意。  相似文献   

2.
在pH为9.0的Clark-Lubs缓冲溶液中, 强力霉素、土霉素、四环素和金霉素等四环素类抗生素与钨酸钠反应形成1∶1的阴离子螯合物, 它仅能引起吸收光谱的变化, 不能引起共振瑞利散射(RRS)的增强, 但是当该螯合物进一步与乙基紫反应形成三元离子缔合物时, RRS显著增强并产生新的RRS光谱, 它们具有相似的光谱特征, 最大RRS波长均位于328 nm处. 4种抗生素的线性范围和检出限分别为0.047~4.8 μg•mL-1和14.1 ng•mL-1(强力霉素); 0.078~5.0 μg•mL-1和23.5 ng•mL-1(土霉素); 0.081~5.7 μg•mL-1和24.4 ng•mL-1(四环素); 0.122~7.7 μg•mL-1和36.6 ng•mL-1(金霉素). 考察了三元离子缔合配合物的组成, 讨论了配合物的结构和反应机理, 并发展了一种高灵敏、简便快速测定四环素类抗生素的新方法.  相似文献   

3.
在弱酸性介质中,乙基紫(EV)与阴离子表面活性剂(ASF)反应形成离子缔合物,导致共振瑞利散射增强,并产生新的RRS光谱,最大RRS峰位于330nm和508nm。方法有很高的灵敏度,对于ASF的检出限分别为1.1μg/L十二烷基苯磺酸钠(SDBS)、2.5μg/L十二烷基硫酸钠(SDS)和270mg/L十二烷基磺酸钠(SLS),可用于痕量ASF的测定。研究了离子缔合反应的适宜条件,讨论了离子强度、有机溶剂、温度的影响,考察了方法的线性范围和选择性。方法用于合成水样和环境水样中阴离子表面活性剂的测定,获得了满意结果。  相似文献   

4.
硫酸皮肤素的共振瑞利散射法测定   总被引:2,自引:0,他引:2  
研究了硫酸皮肤素对十六烷基三甲基溴化铵(CTMAB)发生缔合反应的条件、共振瑞利散射特征.结果表明,在pH 5.8的BR缓冲溶液中,硫酸皮肤素能与CTMAB形成离子缔合物,使共振瑞利散射RRS急剧增强并产生新的RRS光谱.硫酸皮肤素浓度在0.04~4.0μg/mL之间与散射强度呈线性关系,方法检出限(3σ)为13 ng/mL,并以CTMAB体系为例研究了共存物质的影响,表明方法选择性好.  相似文献   

5.
甲基紫共振瑞利散射光谱法测定透明质酸钠   总被引:1,自引:0,他引:1  
在pH5的乙酸盐缓冲介质中,甲基紫与透明质酸钠作用形成结合产物时将导致溶液共振瑞利散射(RRS)大大增强并产生新的RRS光谱,其最大散射峰位于341 nm处。透明质酸钠在0~2.5 mg.L-1范围内其浓度与RRS强度成正比。该法具有高灵敏度,对透明质酸钠的检出限(3σ)为20.1μg.L-1,选择性较好。此法用于测定从鸡冠组织中提取的透明质酸的粗品,测定结果的平均相对标准偏差为2.3%,加标平均回收率为98.9%。  相似文献   

6.
溴代十六烷基吡啶光谱探针RRS法测定硫酸皮肤素   总被引:2,自引:1,他引:1  
研究了溴代十六烷基吡啶与硫酸皮肤素发生缔合反应的条件、共振瑞利散射特征.结果表明,在pH5.0的BR缓冲溶液中,硫酸皮肤素能与溴代十六烷基吡啶形成离子缔合物,使共振瑞利散射RRS急剧增强并产生新的RRS光谱.硫酸皮肤素浓度在0.015μg/mL~2.5μg/mL之间与散射强度呈线性关系,方法具有较高的灵敏度,其检出限(3σ)为4.5ng/mL,还研究了共存物质的影响,表明该方法选择性较好.该法用于血样和尿样中硫酸皮肤素含量的测定,结果令人满意.  相似文献   

7.
在pH 8.71的Tris-HCI缓冲介质中,结晶紫(CV)与苯唑西林(OXA)结合,使体系的共振瑞利散射(RRS)急剧增强并出现新的RRS光谱,最大共振瑞利散射峰位于380nm处,苯唑西林的浓度在0.08~0.8μg·mL-1范围内与散射强度(△1RRS)成良好的线性关系,据此建立了测定苯唑西林的共振瑞利散射法,检出...  相似文献   

8.
金纳米微粒作探针共振瑞利散射光谱法测定亚甲蓝   总被引:7,自引:0,他引:7  
在pH为6.5~9.5的中性或弱碱性介质中, 金纳米微粒可与亚甲蓝(MB)阳离子靠静电引力及疏水作用力结合, 形成粒径较大的聚集体(平均粒径从12 nm增至20 nm), 这种聚集体的形成导致共振瑞利散射(RRS)强度显著增强, 最大散射峰位于371 nm. 在适当条件下, 散射强度(ΔI)与亚甲蓝浓度成正比. 该法具有高灵敏度, 将金纳米微粒作为测定亚甲蓝的高灵敏RRS探针, 对亚甲蓝的检出限为21.17 ng/mL, 该法简便, 快速, 且有较好的选择性, 可用于血液中亚甲蓝的测定.  相似文献   

9.
金纳米微粒作探针共振瑞利散射光谱法测定卡那霉素   总被引:18,自引:0,他引:18  
在一种含柠檬酸盐的溶液中, 柠檬酸根阴离子自组装于带正电荷的金纳米微粒表面, 使金纳米微粒成为一种被柠檬酸根包裹的带负电荷的超分子化合物. 在pH 4.4~6.8的弱酸性介质中, 它可与质子化的卡那霉素(KANA)阳离子借静电引力、疏水作用力结合, 形成粒径更大的聚集体(平均粒径从12增至20 nm), 这种聚集体的形成在引起金纳米的等离子体吸收带明显红移(Δλ=102 nm)的同时, 共振瑞利散射(RRS)显著增强并且倍频散射(FDS)和二级散射(SOS)等共振非线性散射也有较大的增强, 最大散射峰分别位于280 nm (RRS), 310 nm (FDS)和480 nm (SOS)处. 在适当条件下, 散射强度(ΔI)与卡那霉素的浓度成正比, 其中RRS法灵敏度最高, 因此金纳米微粒可作为测定卡那霉素的高灵敏RRS探针, 它对卡那霉素的检出限为10.52 ng•mL-1, 方法有较好的选择性, 可用于血液中卡那霉素的测定, 文中还讨论了有关反应机理和RRS增强的原因.  相似文献   

10.
在pH 1.8~3.0的酸性介质中,质子化的盐酸异丙嗪(PMZ)可与带负电荷的金纳米微粒依靠静电和疏水作用相互结合,导致共振瑞利散射(RRS)强度显著增强,其最大散射峰位于368 nm,并在284,440,498 nm处有明显的散射峰,在选定的测量波长下,盐酸异丙嗪在0.04~0.10μg/mL的浓度范围内与RRS强度成正比,该法具有高的灵敏度,其检出限为1.34 ng/mL。考察了体系的RRS光谱特征,研究了适宜的反应条件、影响因素,研究了共存物质的影响,据此建立了金纳米微粒作探针RRS法测定盐酸异丙嗪的新方法。  相似文献   

11.
The intensities of resonance Rayleigh scattering (RRS) of poly (vinyl pyrrolidone) (PVP) and of eosin Y (EY) are weak in solutions of pH 2.9 to 3.4. If reacted with each other, the intensities of RRS are largely enhanced and new RRS bands appear at 276 nm and 320 nm. The intensity at 276 nm is linearly related to the concentration of PVP in the range from 0.10 to 1.6 μg mL-1. The correlation coefficient is 0.9987, and the detection limit is 28.7 ng mL-1. The binding mode between PVP and EY was studied by RRS, and by absorption and fluorescence spectroscopy. The optimum reaction conditions and some potential interferences were investigated. The method displays good selectivity and was applied to the determination of PVP in beer.  相似文献   

12.
Liu SP  He YQ  Liu ZF  Kong L  Lu QM 《Analytica chimica acta》2007,598(2):304-311
When gold nanoparticles were being prepared by sodium citrate reduction method, citrate anions self-assembled on the surface of gold nanoparticles to form supermolecular complex anions with negative charges, and protonated raloxifene (Ralo) was positively charged and could bind with the complex anions to form larger aggregates through electrostatic force and hydrophobic effects, which could result in the remarkable enhancement of the resonance Rayleigh scattering intensity (RRS), and the appearance of new RRS spectra. At the same time, the second-order scattering (SOS) and frequency-doubling scattering (FDS) intensities were also enhanced. The maximum wavelengths were located near 370 nm for RRS, 520 nm for SOS, and 350 nm for FDS, respectively. Among them, the RRS method had the highest sensitivity and the detection limit was 5.60 ng mL−1 for Ralo, and its linear range was 0.05-2.37 μg mL−1. A new RRS method for the determination of trace Ralo using gold nanoparticles probe was developed. The optimum conditions of the reaction and influencing factors were investigated. In addition, the reaction mechanism and the reasons for the enhancement of RRS were discussed.  相似文献   

13.
In pH 6.6 Britton–Robinson buffer medium, the CdS quantum dots capped by thioglycolic acid could react with aminoglycoside (AGs) antibiotics such as neomycin sulfate (NEO) and streptomycin sulfate (STP) to form the large aggregates by virtue of electrostatic attraction and the hydrophobic force, which resulted in a great enhancement of resonance Rayleigh scattering (RRS) and resonance non-linear scattering such as second-order scattering (SOS) and frequency doubling scattering (FDS). The maximum scattering peak was located at 310 nm for RRS, 568 nm for SOS and 390 nm for FDS, respectively. The enhancements of scattering intensity (ΔI) were directly proportional to the concentration of AGs in a certain ranges. A new method for the determination of trace NEO and STP using CdS quantum dots probe was developed. The detection limits (3σ) were 1.7 ng mL−1 (NEO) and 4.4 ng mL−1 (STP) by RRS method, were 5.2 ng mL−1 (NEO) and 20.9 ng mL−1 (STP) by SOS method and were 4.4 ng mL−1 (NEO) and 25.7 ng mL−1 (STP) by FDS method, respectively. The sensitivity of RRS method was the highest. The optimum conditions and influence factors were investigated. In addition, the reaction mechanism was discussed.  相似文献   

14.
提出了共振瑞利散射光谱法测定人体血浆,尿样中加替沙星含量的方法。在p H5.5~6.5的HAc-Na Ac缓冲溶液中,加替沙星(Gatifloxacin,GTFX)与Tb(Ⅲ)反应形成的二元螯合物共振瑞利散射(Resonance Rayleigh Scattering,RRS)强度极弱,但当其进一步与酸性染料茜素红反应形成三元离子缔合物时,RRS显著增强,其最大散射波长分别位于373 nm和605nm处。在373 nm处,方法的线性范围和检出限分别为0~5.26μg·m L-1和7.5 ng·m L-1。本法简便、快速,并具有良好的选择性,用于片剂,人尿液和血浆中加替沙星含量的测定,其回收率在96.1~104.5%。  相似文献   

15.
To date, there is no study on bioethanol processing-induced changes in molecular structural profiles mainly related to lipid biopolymer. The objectives of this study were to: (1) determine molecular structural changes of lipid related functional groups in the co-products that occurred during bioethanol processing; (2) relatively quantify the antisymmetric CH3 and CH2 (ca. 2959 and 2928 cm−1, respectively), symmetric CH3 and CH2 (ca. 2871 and 2954 cm−1, respectively) functional groups, carbonyl CO ester (ca. 1745 cm−1) and unsaturated groups (CH attached to CC) (ca. 3007 cm−1) spectral intensities as well as their ratios of antisymmetric CH3 to antisymmetric CH2, and (3) illustrate the molecular spectral analyses as a research tool to detect for the sensitivity of individual moleculars to the bioethanol processing in a complex plant-based feed and food system without spectral parameterization. The hypothesis of this study was that bioethanol processing changed the molecular structure profiles in the co-products as opposed to original cereal grains. These changes could be detected by infrared molecular spectroscopy and will be related to nutrient utilization. The results showed that bioethanol processing had effects on the functional groups spectral profiles in the co-products. It was found that the CH3-antisymmetric to CH2-antisymmetric stretching intensity ratio was changed. The spectral features of carbonyl CO ester group and unsaturated group were also different. Since the different types of cereal grains (wheat vs. corn) had different sensitivity to the bioethanol processing, the spectral patterns and band component profiles differed between their co-products (wheat DDGS vs. corn DDGS). The multivariate molecular spectral analyses, cluster analysis and principal component analysis of original spectra (without spectral parameterization), distinguished the structural differences between the wheat and wheat DDGS and between the corn and corn DDGS in the antisymmetric and symmetric CH3 and CH2 spectral region (ca. 2994–2800 cm−1) and unsaturated group band region (3025–2996 cm−1). Further study is needed to quantify molecular structural changes in relation to nutrient utilization of lipid biopolymer.  相似文献   

16.
在pH 4.1的BR缓冲溶液中,乙基紫(EV)与七叶皂苷钠(SA)作用,形成离子缔合物,溶液颜色发生明显褪色.其最大褪色波长位于594 nm处,七叶皂苷钠的质量浓度与褪色强度呈正比,七叶皂苷钠的质量浓度在0.15~35.0μg/mL范围内遵守比尔定律,相关系数为R=0.9995,摩尔吸光系数为2.5×104L·mol-1·cm-1,检出限为45.8 ng/mL.该方法已用于片剂和尿样中七叶皂苷钠的测定.  相似文献   

17.
The interaction of procaine hydrochloride and beta-cyclodextrin in aqueous solution was studied using resonance Rayleigh scattering technology. The molar ratio of the inclusion complex was 1:1 established by spectrophotometry. The resonance Rayleigh scattering technology was first applied in the determination of the beta-cyclodextrin inclusion constant. The inclusion constant of procaine hydrochloride beta-cyclodextrin complex Kf is 1.23 x 10(2) and 1.27 x 10(2) l mol(-1) for method I and 1.15 x 10(2) and 1.21 x 10(2) l mol(-1) for method II. These determination results were in correspondence with the results of the spectrophotometric and fluorescence methods. Therefore, the resonance Rayleigh scattering method can be used as a new technology for the determination of the inclusion constant.  相似文献   

18.
A triple-wavelength overlapping resonance Rayleigh scattering (TWO-RRS) method was developed to detect dextran sulfate sodium (DSS) with crystal violet (CV). At pH 10.0 Britton Robinson buffer solution medium, the interaction of CV with DSS occurred which greatly enhanced the RRS intensity with the new RRS peaks appearing at 340, 501 and 671 nm and all these three peaks enhanced with the increase of DSS concentration in the range of 0.04-2.5 microg ml(-1) and the detection limit for the three single peaks was 0.024, 0.027, and 0.027 microg ml(-1), respectively, whereas that of the TWO-RRS method was 0.013 microg ml(-1). The TWO-RRS method was found to have much better flexibility and high sensitivity than the single-wavelength method. In this paper, the interaction conditions were optimized. The affecting factors and characteristics of RRS for the interaction of DSS with CV were investigated and a sensitive method for the determination of trace amounts of DSS using the TWO-RRS method was developed.  相似文献   

19.
Resonance Rayleigh scattering (RRS) of cationic surfactants–Eosin Y systems and their analytical application have been studied. In aqueous solution at pH 2~3, Eosin Y reacts with a monomer of cationic surfactants (CS), such as Zephiramine (Zeph), tetradecylpyridinium bromide (TPB), cetylpyridinium bromide (CPB), cetylpyridinium chloride (CPC) and cetyltrimethylammonium bromide (CTMAB), to form an ion associate and a new RRS spectrum appears. The spectral characteristics of the five ion associates are similar and their maximum scattering wavelengths (λmax) are all at 313 nm. The intensity of RRS at λmax of the ion associate is directly proportional to the concentration of CS in the range of 0~3.0 μg/25 mL. The technique has high sensitivity for the determination of CS; their detection limit is between 5.57 ng/mL and 7.60 ng/mL depending on the CS. In this case, most metal and non-metal ions, NH4 + and some anionic surfactants do not interfere, so that the method has a good selectivity. It can be applied to the determination of trace amounts of cationic surfactants in water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号