首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The endohedral 3He NMR chemical shifts of open-cage fullerene compounds and higher fullerenes 3He@C n (n = 82, 84, 86) have been calculated at the GIAO-B3LYP/3-21G//AM1 level. The predicted 3He NMR chemical shifts of open-cage fullerene compounds agree well with the experimental data. More importantly, the challenging peak assignments in the two 3He NMR spectra of higher fullerenes have been successfully achieved by our computed endohedral 3He chemical shifts in combination with experimental results.  相似文献   

2.
3.
13C shielding data for 100 derivatives of pyrazole are reported. These include methyl, ethyl, n-propyl, tert-butyl, phenyl, hydroxymethyl, carboxyl, ethoxycarbonyl, cyano, amino, hydrazino, nitro, azido, chloro, bromo and iodo groups as substituents on the ring carbon atoms.  相似文献   

4.
Proton chemical shifts of eight cyclic amide molecules were measured in DMSO and D2O solutions. The magnetic shieldings of the corresponding aliphatic, aromatic, and amide protons were calculated by Hartree-Fock and DFT, using the 6-311G**, 6-311++G**, and TZVP basis sets. For aliphatic protons, all of these methods reproduce the experimental values in DMSO solutions excellently after linear regression. The Hartree-Fock method tends to give slightly better agreement than DFT. The best performance is given by the HF/6-311G** method, with an rms deviation of 0.068 ppm. The deviations from experimental chemical shifts in D2O solutions are only slightly larger than those in DMSO solutions. This suggests that we can use the calculated gas phase proton chemical shifts directly to predict experimental data in various solvents, including water. For amide protons, which exchange with water and form hydrogen bonds with DMSO, only modest agreement is obtained, as expected. The present studies confirm that the GIAO approach can reach high accuracy for the relative chemical shifts of aliphatic and aromatic protons at a low cost. Such calculations may provide constraints for the conformational analysis of proteins and other macromolecules.  相似文献   

5.
Forty‐five proton chemical shifts in 14 aromatic molecules have been calculated at several levels of theory: Hartree–Fock and density functional theory with several different basis sets, and also second‐order Møller–Plesset (MP2) theory. To obtain consistent experimental data, the NMR spectra were remeasured on a 500 MHz spectrometer in CDCl3 solution. A set of 10 molecules without strong electron correlation effects was selected as the parametrization set. The calculated chemical shifts (relative to benzene) of 29 different protons in this set correlate very well with the experiment, and even better after linear regression. For this set, all methods perform roughly equally. The best agreement without linear regression is given by the B3LYP/TZVP method (rms deviation 0.060 ppm), although the best linear fit of the calculated shifts to experimental values is obtained for B3LYP/6‐311++G**, with an rms deviation of only 0.037 ppm. Somewhat larger deviations were obtained for the second test set of 4 more difficult molecules: nitrobenzene, azulene, salicylaldehyde, and o‐nitroaniline, characterized by strong electron correlation or resonance‐assisted intramolecular hydrogen bonding. The results show that it is possible, at a reasonable cost, to calculate relative proton shieldings in a similar chemical environment to high accuracy. Our ultimate goal is to use calculated proton shifts to obtain constraints for local conformations in proteins; this requires a predictive accuracy of 0.1–0.2 ppm. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1887–1895, 2001  相似文献   

6.
As the interest in the use of fullerene compounds in biomedical and cosmetic applications increases, so too does the need to develop methods for their determination and quantitation in such complex matrices. In this work, we studied the behavior of C60 and C70 fullerenes in non-aqueous capillary electrophoresis, as well as two C60 fullerene derivatives not previously reported by any electrophoretic method, N-methyl-fulleropyrrolidine and (1,2-methanofullerene C60)-61-carboxylic acid. The separation was performed using fused-silica capillaries with an I.D. of 50?μm and tetraalkylammonium salts, namely tetra-n-decylammonium bromide (200?mM) and tetraethylammonium bromide (40?mM), in a solvent mixture containing 6?% methanol and 10?% acetic acid in acetonitrile/chlorobenzene (1:1?v/v) as the background electrolyte. Detection limits, based on a signal-to-noise ratio of 3:1, were calculated, and values between 1 and 3.7?mg/L were obtained. Good run-to-run and day-to-day precisions on concentration were achieved with relative standard deviation lower than 15?%. For the first time, an electrophoretic technique has been applied for the analysis of C60 fullerene in a commercial cosmetic cream. A standard addition method was used for quantitation, and the result was compared with that obtained by analyzing the same cream by liquid chromatography coupled to mass spectrometry.  相似文献   

7.
借助原子电性作用矢量(AEIV)和原子杂化状态指数(AHSI),对39种丁烷衍生物类木脂素共计854个等价C原子进行表征,并建立用于模拟该类分子13C NMR化学位移的多元线性回归方程.所得定量结构波谱关系(QSSR)模型及留一法交互检验相关系数分别为r=0.981和q=0.962.进一步用从马尾松松针中分离所得新木脂素中20个13C NMR化学位移对模型进行外部验证,预测结果与实验值较接近.表明所建模型有良好稳定性和泛化力,可对丁烷衍生物类木脂素13C NMR谱学数据准确模拟.  相似文献   

8.
Theoretical and experimental studies on magnetic shielding of the phosphorus nucleus in trichloro-[2-(1H-pyrazol-1-yl)ethenyl]phosphonium hexachlorophosphate(V) and 1,1,1,1-tetrachloro-1H-1λ6-pyrazolo-[1,2-a][1,2,3]diazaphosphol-8-ium-1-ide showed that intramolecular coordination of the phosphorus atom in the chlorophosphonium group to the nitrogen atom in the pyrazole ring leads to upfield shift of the phosphorus signal (to δP 170 ppm) and that the contribution of the spin-orbital contribution to the 31P chemical shift reaches 15%. Relativistic effects and effects of the medium are determining in the theoretical calculation of 31P NMR chemical shifts.  相似文献   

9.
Quantum-chemical calculations for molecular tweezers systems are presented, where the focus is not only on the recognition process in the host-guest systems, but on the self aggregation of the tweezers host as well. Such intermolecular interactions influence the corresponding NMR spectra strongly by up to 6 ppm for proton chemical shifts, since ring-current effects are particularly important. The quantum-chemical results allow one to reliably assign the spectra and to gain information both on the structure and on the importance of intra- and intermolecular interactions. In addition, we study the accuracy of a variety of density functionals for describing the present host-guest systems, where we observe a considerable underestimation of ring-current effects on (1)H NMR chemical shifts at the density functional theory (DFT) level using smaller basis sets such as 6-31G**, so that larger bases like TZP are required. This stands in contrast to the behavior of the Hartree-Fock scheme, where small basis sets, such as 6-31G**, provide reliable (1)H NMR shieldings for molecular tweezers systems.  相似文献   

10.
11.
12.
Density functional theory at the B3LYP/6-311++G(d,p) level is applied to calculate the (29)Si NMR chemical shifts of a variety of organosiloxane moieties including monomers or precursors for polymerization and representative segments of organosiloxane polymers or thin films. The calculated shifts of two linear dimethylsiloxane compounds, hexamethylcyclotrisiloxane (D3) and octamethylcyclotetrasiloxane (D4), compare well with their known values, having an average error of 3.4 ppm. The same method is applied to structures believed to occur in organosilicate glass thin films deposited using hot-filament chemical vapor deposition (HFCVD) from D3 and D4. The chemical shift at -15 ppm is identified as a cross-linking Si-Si bond between two strained D groups and has not previously been reported. Retention of the strained ringed structure in HFCVD films deposited from D3 is confirmed. The rings are bonded to the matrix through either Si-O or Si-Si bonds, with the latter only becoming prevalent when higher filament temperatures are employed. The strained ring structure is also observed in films deposited from a precursor with a larger unstrained ring structure, D4. These observations suggest that the known gas-phase conversion pathways of D4 to D3 and dimethylsilanone as well as the methyl abstraction reaction from D3 operate in the HFCVD reaction chemistry.  相似文献   

13.
The main factors affecting the accuracy and computational cost of the Second‐order Möller‐Plesset perturbation theory (MP2) calculation of 77Se NMR chemical shifts (methods and basis sets, relativistic corrections, and solvent effects) are addressed with a special emphasis on relativistic effects. For the latter, paramagnetic contribution (390–466 ppm) dominates over diamagnetic term (192–198 ppm) resulting in a total shielding relativistic correction of about 230–260 ppm (some 15% of the total values of selenium absolute shielding constants). Diamagnetic term is practically constant, while paramagnetic contribution spans over 70–80 ppm. In the 77Se NMR chemical shifts scale, relativistic corrections are about 20–30 ppm (some 5% of the total values of selenium chemical shifts). Solvent effects evaluated within the polarizable continuum solvation model are of the same order of magnitude as relativistic corrections (about 5%). For the practical calculations of 77Se NMR chemical shifts of the medium‐sized organoselenium compounds, the most efficient computational protocols employing relativistic Dyall's basis sets and taking into account relativistic and solvent corrections are suggested. The best result is characterized by a mean absolute error of 17 ppm for the span of 77Se NMR chemical shifts reaching 2500 ppm resulting in a mean absolute percentage error of 0.7%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Fragment density functional theory (DFT) calculation of NMR chemical shifts for several proteins (Trp-cage, Pin1 WW domain, the third IgG-binding domain of Protein G (GB3) and human ubiquitin) has been carried out. The present study is based on a recently developed automatic fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) approach but the solvent effects are included by using the PB (Poisson-Boltzmann) model. Our calculated chemical shifts of (1)H and (13)C for these four proteins are in excellent agreement with experimentally measured values and represent clear improvement over that from the gas phase calculation. However, although the inclusion of the solvent effect also improves the computed chemical shifts of (15)N, the results do not agree with experimental values as well as (1)H and (13)C. Our study also demonstrates that AF-QM/MM calculated results accurately reproduce the separation of α-helical and β-sheet chemical shifts for (13)C(α) atoms in proteins, and using the (1)H chemical shift to discriminate the native structure of proteins from decoys is quite remarkable.  相似文献   

15.
16.
The analysis of (15)N chemical shift data from over a hundred anilines, N-methyl anilines, N,N-dimethyl anilines and phenylhydrazines with substituents in the phenyl ring leads to an empirical equation, delta(cal) = deltaon + Deltao + Deltam + Deltap, for calculating (15)N NMR chemical shifts of the amino group. This equation is based on a linear regression analysis using eighteen substituent parameters and leads to good conformity with the expected data.  相似文献   

17.
A number of programs and tools that simulate 1H and 13C nuclear magnetic resonance (NMR) chemical shifts using empirical approaches are available. These tools are user‐friendly, but they provide a very rough (and sometimes misleading) estimation of the NMR properties, especially for complex systems. Rigorous and reliable ways to predict and interpret NMR properties of simple and complex systems are available in many popular computational program packages. Nevertheless, experimentalists keep relying on these “unreliable” tools in their daily work because, to have a sufficiently high accuracy, these rigorous quantum mechanical methods need high levels of theory. An alternative, efficient, semi‐empirical approach has been proposed by Bally, Rablen, Tantillo, and coworkers. This idea consists of creating linear calibrations models, on the basis of the application of different combinations of functionals and basis sets. Following this approach, the predictive capability of a wider range of popular functionals was systematically investigated and tested. The NMR chemical shifts were computed in solvated phase at density functional theory level, using 30 different functionals coupled with three different triple–ζ basis sets. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
We report density functional calculations of 3He nuclear magnetic resonance chemical shifts in a series of experimentally known endohedral helium fullerenes, He(n)@Cm(q) (n = 1, 2; m = 60, 70, 76, 78; q = 0, 6-), including for the first time anionic and di-helium species. Despite the lack of dispersion in the density functional model, the results are in promising agreement with experiment. Density functional theory performs better than Hartree-Fock for the anionic systems. In the di-helium species confined in the small C60 cage, besides the atomic displacements from the center position, the direct He-He interactions contribute to the 3He shift.  相似文献   

19.
Results of approbation of a new quantum mechanical approach of lone pairs (LPs) visualization, its optimization and testing on a range of model molecules are presented. The main idea of proposed methodology is using 3He atom as a probe for investigating electronic shells of species with LPs. As model objects, we consider “classical” examples of hydrogen cyanide, methanimine, ammonia, phosphine, formaldehyde, water, and hydrogen sulfide. It is shown that LPs can be visualized by means of 3D maps of Laplacian of 3He chemical shift ∇2δHe. NMR calculations could be performed using level of theory as low as B3LYP/6-31G, allowing for the reduction of computational time without significant loss of quality. Advantages of our approach are discussed in comparison with usual methods of lone pairs visualization (electron localization function, molecular electrostatic potential).  相似文献   

20.
1H and 13C NMR chemical shift calculations using the density functional theory–gauge including/invariant atomic orbitals (DFT–GIAO) approximation at the B3LYP/6‐311G++(d,p) level of theory have been used to assign both natural diastereoisomers of 6β‐hydroxyhyoscyamine. The theoretical chemical shifts of the 1H and 13C atoms in both isomers were calculated using a previously determined conformational distribution, and the theoretical and experimental values were cross‐compared. For protons, the obtained average absolute differences and root mean square (rms) errors for each comparison showed that the experimental chemical shifts of dextrorotatory and levorotatory 6β‐hydroxyhyoscyamines correlated well with the theoretical values calculated for the (3R,6R,2′S) and (3S,6S,2′S) configurations, respectively, whereas for 13C atoms the calculations were unable to differentiate between isomers. The nature of the relatively large chemical shift differences observed in nuclei that share similar chemical environments between isomers was asserted from the same calculations. It is shown that the anisotropic effect of the phenyl group in the tropic ester moiety, positioned under the tropane ring, has a larger shielding effect over one ring side than over the other one. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号