首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Convective heat transfer in a transverse cavity with a small aspect ratio, angle of wall inclination ϕ = 30–90°, and heated bottom, frontal, and rear walls of the cavity is studied experimentally. Temperature distributions are measured in longitudinal and transverse sections on three walls; temperature fields are measured over the entire heated surface. Local and mean heat-transfer coefficients are calculated. The highest intensification of heat transfer is found to occur on the rear wall for low values of ϕ Reconstruction of the one-cell structure to the two-cell structure of the primary vortex in the cavity leads to a drastic decrease in heat transfer over the cavity span from the end faces toward the center in the case with ϕ = 60 and 70°. A certain increase in the mean heat-transfer coefficient averaged over the entire heated surface is noted for ϕ = 60°. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 4, pp. 23–29, July–August, 2007.  相似文献   

2.
湍流边界层流场与噪声实验研究   总被引:5,自引:0,他引:5  
罗柏华  刘宇陆 《实验力学》2001,16(4):378-386
在重力式水洞中进行了水翼及半翼湍流边界层流场与噪声的实验研究。测量了水翼及半翼边界层附近的湍流脉动速度场;测量了半翼翼型表面三点处的压力脉动及其辐射噪声,测量了水翼内部测点的噪声及外部辐射噪声,在不同流速、不同攻角、光滑和粗糙翼面的情况下都进行了测量分析。试验结果发现,上述因素对模型的边界层湍流速度场有显著影响,15度攻角时,翼面附近湍流强度要比0度时大得多,粗糙翼面附近的湍流强度比光滑的大,而湍流强度随来流速度的变化不大,u(来流)方向和v方向的湍流强度量级相当;一般地,翼面压力脉动、翼内部噪声及外部噪声都是随来流速度的增大而增大,随攻角的增大而增大,粗糙翼面时的结果要比光滑翼面的大。从压力脉动与噪声测量结果与相应的流场测量结果比较可知,可以从湍流区域的湍流强度来判断出声源强度的定性变化。  相似文献   

3.
A detail study involving flow visualization, Laser Doppler Velocimeter (LDV) measurements and numerical prediction is presented. The visualization experiments revealed striking results of a pulsatile motion in the separated flow region associated with the formation and passage of large eddy structures. Measurements of mean velocities and turbulence intensity profiles across the separated flow field, provided information about the separated shear layer development and the recirculating flow pattern. The numerical predictions, obtained with a two-layer turbulence model in conjunction with the SIMPLE algorithm, failed to reproduce the coherent eddies and the pulsatile motion, but the mean velocities are reasonably reproduced.  相似文献   

4.
New data on the base pressure in a two-dimensional ow with a Mach number M = 5 are obtained for a wide range of variation of the normalized boundary-layer thickness in the flow-separation cross section. The test results are compared with Tanner’s theory, and a conclusion is made that this numerical model has to be corrected. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 3, pp. 23–28, May–June, 2005.  相似文献   

5.
Results of an experimental study of heat transfer in a separated flow behind a step and a rib are presented. The influence of the obstacle height (H = 6–30 mm) on heat and mass transfer and the structure of the thermal boundary layer is studied. The features of heat transfer in recirculation and relaxation zones of the separated flow are analyzed, and the effect of separation on intensification and suppression of turbulent heat transfer is determined.  相似文献   

6.
A turbulent separation-reattachment flow in a two-dimensional asymmetrical curved-wall diffuser is studied by a two-dimensional laser doppler velocimeter. The turbulent boundary layer separates on the lower curved wall under strong pressure gradient and then reattaches on a parallel channel. At the inlet of the diffuser, Reynolds number based on the diffuser height is 1.2×105 and the velocity is 25.2m/s. The results of experiments are presented and analyzed in new defined streamline-aligned coordinates. The experiment shows that after Transitory Detachment Reynolds shear stress is negative in the near-wall backflow region. Their characteristics are approximately the same as in simple turbulent shear layers near the maximum Reynolds shear stress. A scale is formed using the maximum Reynolds shear stresses. It is found that a Reynolds shear stress similarity exists from separation to reattachment and the Schofield-Perry velocity law exists in the forward shear flow. Both profiles are used in the experimental work that leads to the design of a new eddy-viscosity model. The length scale is taken from that developed by Schofield and Perry. The composite velocity scale is formed by the maximum Reynolds shear stress and the Schofield-Perry velocity scale as well as the edge velocity of the boundary layer. The results of these experiments are presented in this paper.  相似文献   

7.
The effect of mini-flaps located on either the lower or upper side of an airfoil near its trailing edge on the flow around the trailing edge and the global flow past the airfoil is numerically investigated. The flow pattern near the trailing edge is compared with that on which the Chaplygin-Joukowski hypothesis is based. The mini-flap effect on the aerodynamic characteristics of the airfoil is studied.  相似文献   

8.
运用数值方法,模拟出展向分布的同向倾斜微型射流列与平板湍流边界层相互作用形成流向涡列的流场结构,验证了利用其来对湍流边界层进行控制的可能性.随射流间距减小,流向涡列控制作用流向渗透能力增强,但作用区域减小;随射流速度提高,流向涡列控制作用增强,但过大的射流速度反而会导致流向涡列在局部区域内控制作用的下降;随射流俯仰角减小、倾斜角增大,流向涡列初始控制作用增强,但过小的俯仰角、过大的倾斜角会导致流向涡列流向控制区域明显缩小.要保证流向涡列具有较强的湍流边界层控制作用,必须通过合理配置射流列各主要参数,在保证各流向涡具有一定强度的同时,还要确保各流向涡在形成时部分嵌入边界层内部.  相似文献   

9.
In this paper, experiments to detect turbulent spots in the transitional boundary layers, formed on a flat plate in a free-piston shock tunnel flow, are reported. Experiments indicate that thin-film heat-transfer gauges are suitable for identifying turbulent-spot activity and can be used to identify parameters such as the convection rate of spots and the intermittency of turbulence.  相似文献   

10.
The results of an experimental investigation of the effect of the streamwise pressure gradient in a turbulent boundary layer on the permissible height of the surface roughness of bodies in an incompressible fluid flow are presented. The permissible roughness Reynolds number for which the characteristics of the turbulent boundary layer remain the same as in the case of flow past a smooth surface is determined.  相似文献   

11.
Flow visualization has been conducted in a rotating cavity, comprising two steel discs and a peripheral polycarbonate shroud, for dimensionless flow rates of air up to |Cw|8000 and rotational Reynolds number up to Reφ106. For all the experiments, the ratio of the inner to outer radii of the discs was 0.1 and the ratio of the axial clearance between the discs to their outer radii was 0.133; five different shroud geometries were tested. The flow visualization has confirmed that the flow structure comprises a source region near the shroud, laminar or turbulent Ekman layers on the discs, a sink layer near the centre of the cavity, and an interior core of rotating fluid. Above a certain flow rate, this structure was found to be unstable; heating one disc tended to stabilize the flow. For isothermal flow, measurements of the size of the source region were in good agreement with values predicted from a simple theoretical model.  相似文献   

12.
This is a review of experimental studies of turbulent flow in a conical diffuser by eight Ph.D. students, eleven M.Sc. students, one M.Eng. student, and myself in the past 29 years. During this time, two conical diffusers were constructed: the first was of cast aluminum construction, and the second was of plastic fabrication. These two diffusers were basically the same in geometry except that the pipe section was constructed as an integral part of the plastic diffuser to avoid the lip at the junction of the inlet pipe and the diffuser. The conical diffuser had a total divergence angle of 8°, an area ratio of 4:1, and an inlet diameter of 0.1016 m (4 in.).

The flow at the inlet of the diffuser was usually fully developed pipe flow, but sometimes it was boundary layer grown on the pipe wall. Hot-wire and pulse-wire anemometry together with computer facilities were used to obtain the results of complex flow present in the conical diffuser. Mean velocity profiles were obtained throughout the diffuser, which in turn were used to obtain strain rates and their principal direction. Turbulence moments up to fourth order were measured. The results were used to assess momentum, turbulent kinetic energy, and shear stress equations. Other features such as instantaneous flow reversals in the wall region, relative strength of large eddies, extra strain rate, and the production of kinetic energy also were investigated to find the dynamical picture in the diffuser flow.  相似文献   


13.
This paper presents the results of an experimental study of the unsteady nature of a hypersonic separated turbulent flow. The nomimal test conditions were a freestream Mach number of 7.8 and a unit Reynolds number of 3.5×107/m. The separated flow was generated using finite span forward facing steps. An array of flush mounted high spatial resolution and fast response platinum film resistance thermometers was used to make multi-channel measurements of the fluctuating surface heat trtansfer within the separated flow. Conditional sampling analysis of the signals shows that the root of separation shock wave consists of a series of compression wave extending over a streamwise length about one half of the incoming boundary layer thickness. The compression waves converge into a single leading shock beyond the boundary layer. The shock structure is unsteady and undergoes large-scale motion in the streamwise direction. The length scale of the motion is about 22 percent of the upstream influence length of the separation shock wave. There exists a wide band of frequency of oscillations of the shock system. Most of the frequencies are in the range of 1–3 kHz. The heat transfer fluctuates intermittently between the undisturbed level and the disturbed level within the range of motion of the separation shock wave. This intermittent phenomenon is considered as the consequence of the large-scale shock system oscillations. Downstream of the range of shock wave motion there is a separated region where the flow experiences continuous compression and no intermittency phenomenon is observed. The project supported by National Natural Science Foundation of China  相似文献   

14.
Results of numerical simulation of interaction between an oblique shock wave and a turbulent boundary layer formed in a supersonic (Mach number M =5) flow past a flat plate are presented. The computations are performed for three cases of interaction of different intensity, which result in an attached or detached flow. Numerical results are compared with experimental data. The effect of flow turbulence and shockwave unsteadiness on flow parameters is studied.  相似文献   

15.
A direct numerical simulation (DNS) dataset of a turbulent boundary layer (TBL) with a step change from a smooth to a rough surface is analyzed to examine the characteristics of a spatially developing flow. The roughness elements are periodically arranged two-dimensional (2-D) spanwise rods, with the first rod placed 80θin downstream from the inlet, where θin denotes the inlet momentum thickness. Based on an accurate estimation of relevant parameters, clear evidence for mean flow universality is provided when scaled properly, even for the present roughness configuration, which is believed to have one of the strongest impacts on the flow. Compared to previous studies, it is shown that overshooting behavior is present in the first- and second-order statistics and is locally created either within the cavity or at the leading edge of the roughness depending on the type of statistics and the wall-normal measurement location. Inspection of spatial two-point correlations of the streamwise velocity fluctuations shows a continuous increase of spanwise length scales of structures over the rough wall after the step change at a greater growth rate than that over smooth wall TBL flow. This is expected because spanwise energy spectrum shows presence of much energetic wider structures over the rough wall. Full images of the DNS data are presented to describe not only predominance of hairpin vortices but also a possible spanwise scale growth mechanism via merging over the rough wall.  相似文献   

16.
本文应用二维双色四光束激光多普勒测速仪和压强探针样细地测量了二维非对称曲面扩张通道内的不可压湍流边界层分离流动,得到了时均速度和雷诺剪应力以及正反向间歇流动因子和静压分布。实验结果分析表明;湍流边界层分离时,沿边界层高度方向存在着明显的压强差。压强差的极小值对应于位移厚度曲率的极大值和瞬时间歇分离点。Bardina对数尾迹律可以较好地描述瞬时间歇分离点之前的边界层速度分布,但无法描述分离的边界层速  相似文献   

17.
The dynamics of particles of the disperse phase in a turbulent gas flow in planar shock waves sliding along a solid surface with a trapezoid cavity is examined numerically. Lifting of particles from the cavity walls is calculated in the approximation of a rarefied gas suspension. It is shown that the intensity of the transient shock wave and the initial positions of particles have a significant effect on the particle-lifting properties. The height of particle lifting is found to nonmonotonically depend on the initial streamwise coordinate and shock-wave Mach number. It is shown that zones of aggregation and subtraction of particles may be formed at the cavity bottom. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 1, pp. 24–34, January–February, 2007.  相似文献   

18.
The effect of the temperature factor, that is, the ratio of the body temperature to the freestream stagnation temperature, on the structure of the separated flow formed in the presence of a concave corner in a supersonic stream is studied. The strong influence of the temperature factor on the separation zone length and the flow-generated aerodynamic characteristics is established. It is shown that for fairly large deflection angles this flow cannot be described by free interaction, or triple deck, theory.  相似文献   

19.
Results of an experimental study of a turbulent flow past a flat rib with different angles of alignment toward the flow and with different rib heights are presented. The angle of rib alignment toward the flow is varied within ϕ = 50–90°. Vortex formation is visualized, and the coordinates of the reattachment line are determined. It is demonstrated that a decrease in the angle ϕ forms a reattachment region and makes the flow behind the rib more three-dimensional. Pressure coefficients are measured in different longitudinal sections of the channel behind the rib with a varied angle of rib alignment ϕ. Temperature fields on the surface behind the rib are measured by means of an infrared imager and by thermocouples, and the corresponding heat-transfer coefficients are calculated. The effect of the angle of rib alignment toward the flow and the rib height on dynamic and thermal characteristics of the separated flow is analyzed. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 1, pp. 103–109, January–February, 2007.  相似文献   

20.
The supersonic flow of a monatomic gas consisting of hard spherical particles past a flat strip normal to the flow is investigated using the direct simulation Monte-Carlo (DSMC) method. The calculations are performed over the Knudsen and Mach number ranges 0.015–5 and 1.8–15, respectively. The structure of the compressed layer and the aerodynamic characteristics are systematically studied for the Mach number 5 and various Knudsen numbers. The dependences of the compressed-layer thickness in molecular free paths are found. The nonequilibrium processes in the neighborhood of the strip are described on the basis of the data on the temperature anisotropy with respect to three coordinates.__________Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, 2005, pp. 159–167. Original Russian Text Copyright © 2005 by Maltsev and Rebrov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号