首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we consider a model of nonlinear viscoelastic shallow shell that is referred to as the full Marguerre-von Kármán under the presence of long-time memory. We show that the energy functional associated with the system decays exponentially to zero as time goes to infinity.  相似文献   

2.
In this paper we study the von Kármán plate model with long-range memory and we show the general decay of the solution as time goes to infinity. This result generalizes and improves on earlier ones in the literature because it allows certain relaxation functions which are not necessarily of exponential or polynomial decay.  相似文献   

3.
We consider here the full system of dynamic von Kármán equations, taking into account the in-plane acceleration terms, which is a model for the vibrations of a nonlinear elastic plate. We prove global existence and uniqueness of strong solutions for this system with various boundary conditions possibly including feedback terms which are useful for stabilization purposes.  相似文献   

4.
In this paper, we provide results of local and global null controllability for 2-D thermoelastic systems, in the absence of rotational inertia, and under the influence of the (nonLipschitz) von Kármán nonlinearity. The plate component may be taken to satisfy either the clamped or higher order (and physically relevant) free boundary conditions. In the accompanying analysis, critical use is made of sharp observability estimates which obtain for the linearization of the thermoelastic plate (these being derived in [G. Avalos, I. Lasiecka, The null controllability of thermoelastic plates and singularity of the associated minimal energy function, J. Math. Anal. Appl. 294 (2004) 34-61] and [G. Avalos, I. Lasiecka, Asymptotic rates of blowup for the minimal energy function for the null controllability of thermoelastic plates: The free case, in: Proc. of the Conference for the Control of Partial Differential Equations, Georgetown University, Dekker, in press]). Moreover, another key ingredient in our work to steer the given nonlinear dynamics is the recent result in [A. Favini, M.A. Horn, I. Lasiecka, D. Tataru, Addendum to the paper: Global existence, uniqueness and regularity of solution to a von Kármán system with nonlinear boundary dissipation, Differential Integral Equations 10 (1997) 197-200] concerning the sharp regularity of the von Kármán nonlinearity.  相似文献   

5.
We discuss the problem of nonlinear oscillations of a clamped plate in the presence of thermal effects in a subsonic gas flow. The dynamics of the plate is described by von Kármán system in the presence of thermal effects, in which rotational inertia is accounted for. To describe influence of the gas flow we apply the linearized theory of potential flows. Our main result states that each weak solution of the problem considered tends to the set of the stationary points of the problem.  相似文献   

6.
Summary A tinite element method of mixed type is proposed to solve the Dirichlet problem of the von Kármán equations. Existence and convergence of the approximate solution are proved.  相似文献   

7.
This paper presents the analysis of forced vibrations of a cylindrical shell with axisymmetric initial imperfection subjected to hydrodynamic pulsating pressure. The stability of steady state harmonic response is studied with respect to both axisymmetric and asymmetric perturbations. The analysis of stability is based on the nonlinear von Kármán-Donnell equations linearized with respect to perturbations. An interesting conclusion of this paper is that although the axisymmetric steady state motion is linear it can be unstable due to asymmetric perturbations.
Zusammenfassung Die vorliegende Arbeit behandelt erzwungene Schwingungen zylindrischer Schallen mit axialsymmetrischen Imperfektionen, welche einem hydrostatischen pulsierenden Druck ausgesetzt sind. Die Stabilität in Bezug auf axialsymmetrische und nicht-axialsymmetrische Störungen wird untersucht. Diese Untersuchung basiert auf die nicht-linearen von Kármán-Donnell Gleichungen, welche für kleine Störungen linearisiert worden sind. Eine interessante Schlufolgerung dieser Arbeit ist, daß, obwohl die axialsymmetrische stationäry Bewegung linear ist, sie wegen asymmetrischen Storungen instabil werden kann.
  相似文献   

8.
The present paper deals with an eigenvalue problem for a hemivariational inequality, arising in the study of a mechanical problem: the buckling of a von Kármán plate adhesively connected to a rigid support with delamination effects. For this eigenvalue problem an existence result is obtained by applying a critical point method suitable for nonconvex nonsmooth functions. Further, a result concerning the multiplicity of solutions is proved. The mechanical interpretation of these results is briefly discussed.  相似文献   

9.
The nonlinear free vibration of double-walled carbon nanotubes based on the nonlocal elasticity theory is studied in this paper. The nonlinear equations of motion of the double-walled carbon nanotubes are derived by using Euler beam theory and Hamilton principle, with considering the von Kármán type geometric nonlinearity and the nonlinear van der Waals forces. The surrounding elastic medium is formulated as the Winkler model. The harmonic balance method and Davidon–Fletcher–Powell method are utilized for the analysis and simulation of the nonlinear vibration. The simulation results show that the nonlocal parameter, aspect ratio and surrounding elastic medium play more important roles in the nonlinear noncoaxial vibration than those in the coaxial vibration of the double-walled carbon nanotubes. The noncoaxial vibration amplitudes of only considering nonlinear van der Waals forces are larger than those of considering both geometric nonlinearity and nonlinear van der Waals forces.  相似文献   

10.
The Föppl-von Kármán equations are used toexplore the onset of linear instability and the subsequent nonlineardevelopment of buckling patterns in a flat elastic plate dueto an imposed shear or body force such as gravity. Experimentalresults are also presented for a clamped and sheared sheet ofNeoprene rubber and these compare favourably with theory.  相似文献   

11.
Finite dimensional approximation of nonlinear problems   总被引:7,自引:0,他引:7  
Summary We begin in this paper the study of a general method of approximation of solutions of nonlinear equations in a Banach space. We prove here an abstract result concerning the approximation of branches of nonsingular solutions. The general theory is then applied to the study of the convergence of two mixed finite element methods for the Navier-Stokes and the von Kármán equations.supported by the Fonds National Suisse de la Recherche Scientifique  相似文献   

12.
In this paper the von Kármán model for thin, elastic, infinite plate strip resting on a linear elastic foundation of Winkler type is studied. The infinite plate strip is simply-supported and subjected to evenly distributed compressive loads. The critical values of bifurcation parameters and buckling modes for given frequency of longitudinal waves are found on the basis of investigation of linearized problem. The mathematical nonlinear model is reduced to operator equation with Fredholm type operator of index 0 depending on parameters defined in corresponding Hölder spaces. The Lyapunov-Schmidt reduction and the Crandall-Rabinowitz bifurcation theorem (gradient case) are used to examine the postcritical behaviour of the plate. It is proved that there exists maximal frequency of longitudinal waves depending on the compressive load and the stiffness modulus of foundation.  相似文献   

13.
Thermal buckling of nanocolumns considering nonlocal effect and shear deformation is investigated based on the nonlocal elasticity theory and the Timoshenko beam theory. By expressing the nonlocal stress as nonlinear strain gradients and based on the variational principle and von Kármán nonlinearity, new higher-order differential governing equations with corresponding higher-order nonlocal boundary conditions both in transverse and axial directions for instability of nanocolumns are derived. New analytical solutions for some practical examples on instability of nanocolumns are presented and analyzed in detail. The paper concluded that the critical buckling load is significantly increased in the presence of nonlocal stress and the results confirm that nanocolumn stiffness is enhanced by nanoscale size effect and reduced by shear deformation. The critical temperature change is increased with larger diameter to length ratio and higher nonlocal nanoscale. It is also concluded that at low and room temperatures the buckling load of nanocolumns increases with increasing temperature change, while at high temperature the buckling load decreases with increasing temperature change.  相似文献   

14.
Von Kármáns problem of a rotating disk in an infinite viscous fluid is extended to the case where the disk surface admits partial slip. The nonlinear similarity equations are integrated accurately for the full range of slip coefficients. The effects of slip are discussed. An existence proof is also given.  相似文献   

15.
Von Kármáns problem of a rotating disk in an infinite viscous fluid is extended to the case where the disk surface admits partial slip. The nonlinear similarity equations are integrated accurately for the full range of slip coefficients. The effects of slip are discussed. An existence proof is also given.  相似文献   

16.
In this paper, to consider all surface effects including surface elasticity, surface stress, and surface density, on the nonlinear free vibration analysis of simply-supported functionally graded Euler–Bernoulli nanobeams using nonlocal elasticity theory, the balance conditions between FG nanobeam bulk and its surfaces are considered to be satisfied assuming a cubic variation for the component of the normal stress through the FG nanobeam thickness. The nonlinear governing equation includes the von Kármán geometric nonlinearity and the material properties change continuously through the thickness of the FG nanobeam according to a power-law distribution of the volume fraction of the constituents. The multiple scale method is employed as an analytical solution for the nonlinear governing equation to obtain the nonlinear natural frequencies of FG nanobeams. The effect of the gradient index, the nanobeam length, thickness to length ratio, mode number, amplitude of deflection to radius of gyration ratio and nonlocal parameter on the frequency ratios of FG nanobeams is investigated.  相似文献   

17.
18.
We analyze the structure of the Föppl–von Kármán shell equations of linear elastic shell theory using surface geometry and classical invariant theory. This equation describes the buckling of a thin shell subjected to a compressive load. In particular, we analyze the role of polarized Hessian covariant, also known as second transvectant, in linear elastic shell theory and its connection to minimal surfaces. We show how the terms of the Föppl–von Kármán equations related to in-plane stretching can be linearized using the hodograph transform and relate this result to the integrability of the classical membrane equations. Finally, we study the effect of the nonlinear second transvectant term in the Föppl–von Kármán equations on the buckling configurations of cylinders.  相似文献   

19.
The large deflection condition of a bimodular plate may yield a dual nonlinear problem where the superposition theorem is inapplicable. In this study, the bimodular Föppl–von Kármán equations of a plate subjected to the combined action of a uniformly distributed load and a centrally concentrated force are solved using a biparametric perturbation method. First, the deflection and radial membrane stress were expanded in double power series with respect to the two types of loads. However, the biparametric perturbation solution obtained exhibited a relatively slow rate of convergence. Next, by introducing a generalized load and its corresponding generalized displacement, the solution is expanded in a single power series with respect to the generalized displacement parameter, thereby leading to the better convergence on the solution. A numerical simulation is also used to verify the correctness of the biparametric perturbation solution. The introduction of a bimodular effect will modify the stiffness of the plate to some extent. In particular, the bearing capacity of the plate will be strengthened further when the compressive modulus is greater than the tensile modulus.  相似文献   

20.
Summary In the first two papers of this series [4, 5], we have studied a general method of approximation of nonsingular solutions and simple limit points of nonlinear equations in a Banach space. We derive here general approximation results of the branches of solutions in the neighborhood of a simple bifurcation point. The abstract theory is applied to the Galerkin approximation of nonlinear variational problems and to a mixed finite element approximation of the von Kármán equations.The work of F. Brezzi has been completed during his stay at the Université P. et M. Curie and at the Ecole PolytechniqueThe work of J. Rappaz has been supported by the Fonds National Suisse de la Recherche Scientifique  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号