首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A class of nonlocal second-order ordinary differential equations of the form
y(x)=f(x,y(x),(yλ)(x),y(x))  相似文献   

2.
New oscillation criteria of second-order nonlinear differential equations   总被引:1,自引:0,他引:1  
By employing a class of new functions Φ=Φ(t,s,l) and a generalized Riccati technique, some new oscillation and interval oscillation criteria are established for the second-order nonlinear differential equation
(r(t)y(t))+Q(t,y(t),y(t))=0.  相似文献   

3.
We study the equation
−△u(x,y)+ν(x,y)u(x,y)=0  相似文献   

4.
Let d ? 3 be an integer, and set r = 2d?1 + 1 for 3 ? d ? 4, \(\tfrac{{17}}{{32}} \cdot 2^d + 1\) for 5 ? d ? 6, r = d2+d+1 for 7 ? d ? 8, and r = d2+d+2 for d ? 9, respectively. Suppose that Φ i (x, y) ∈ ?[x, y] (1 ? i ? r) are homogeneous and nondegenerate binary forms of degree d. Suppose further that λ1, λ2,..., λ r are nonzero real numbers with λ12 irrational, and λ1Φ1(x1, y1) + λ2Φ2(x2, y2) + · · · + λ r Φ r (x r , y r ) is indefinite. Then for any given real η and σ with 0 < σ < 22?d, it is proved that the inequality
$$\left| {\sum\limits_{i = 1}^r {{\lambda _i}\Phi {}_i\left( {{x_i},{y_i}} \right) + \eta } } \right| < {\left( {\mathop {\max \left\{ {\left| {{x_i}} \right|,\left| {{y_i}} \right|} \right\}}\limits_{1 \leqslant i \leqslant r} } \right)^{ - \sigma }}$$
has infinitely many solutions in integers x1, x2,..., x r , y1, y2,..., y r . This result constitutes an improvement upon that of B. Q. Xue.
  相似文献   

5.
In Rm×Rnm, endowed with coordinates X=(x,y), we consider the PDE
  相似文献   

6.
We show consistency and asymptotic normality of certain estimators for expected exponential growth rates under i.i.d. observations. These statistical functionals are of the form
T(F)=∫logh(x,y)F(dx)F(dy)  相似文献   

7.
Ryser [Combinatorial Mathematics, Carus Mathematical Monograph, vol. 14, Wiley, New York, 1963] introduced a partially ordered relation ‘?’ on the nonnegative integral vectors. It is clear that if S=(s1,s2,…,sn) is an out-degree vector of an orientation of a graph G with vertices 1,2,…,n, then
(Π)  相似文献   

8.
Let IR be a non-trivial interval and let . We present some results concerning the following functional equation, generalizing the Matkowski-Sutô equation,
λ(x,y)φ−1(μ(x,y)φ(x)+(1−μ(x,y))φ(y))+(1−λ(x,y))ψ−1(ν(x,y)ψ(x)+(1−ν(x,y))ψ(y))=λ(x,y)x+(1−λ(x,y))y,  相似文献   

9.
Let γn denote the length of the nth zone of instability of the Hill operator Ly=−y−[4tαcos2x+2α2cos4x]y, where α≠0, and either both α, t are real, or both are pure imaginary numbers. For even n we prove: if t, n are fixed, then for α→0
  相似文献   

10.
We study the stability of the Drygas functional equation:
g(xy)+g(xy−1)=2g(x)+g(y)+g(y−1)  相似文献   

11.
In this paper we will establish some oscillation criteria for the second-order nonlinear neutral delay dynamic equation
(r(t)((y(t)+p(t)y(tτ)Δ)γ)Δ)+f(t,y(tδ))=0  相似文献   

12.
We study del Pezzo surfaces of degree 1 of the form
w2=z3+Ax6+By6  相似文献   

13.
In the paper sufficient conditions are given under which the differential equation y(n)=f(t,y,…,y(n−2))g(y(n−1)) has a singular solution y :[T,τ)→R, τ<∞ fulfilling
  相似文献   

14.
15.
We consider the set S r,n of periodic (with period 1) splines of degree r with deficiency 1 whose nodes are at n equidistant points xi=i / n. For n-tuples y = (y0, ... , yn-1), we take splines s r,n (y, x) from S r,n solving the interpolation problem
$$s_{r,n} (y,t_i ) = y_i,$$
where t i = x i if r is odd and t i is the middle of the closed interval [x i , x i+1 ] if r is even. For the norms L r,n * of the operator ys r,n (y, x) treated as an operator from l1 to L1 [0, 1] we establish the estimate
$$L_{r,n}^ * = \frac{4}{{\pi ^2 n}}log min(r,n) + O\left( {\frac{1}{n}} \right)$$
with an absolute constant in the remainder. We study the relationship between the norms L r,n * and the norms of similar operators for nonperiodic splines.
  相似文献   

16.
For 0<q<1, the q-numerical range is defined on the algebra Mn of all n×n complex matrices by
Wq(A)={xAy:x,yCn,∥x∥=∥y∥=1,〈y,x〉=q}.  相似文献   

17.
Let J be the Lévy density of a symmetric Lévy process in \(\mathbb {R}^{d}\) with its Lévy exponent satisfying a weak lower scaling condition at infinity. Consider the non-symmetric and non-local operator
$$\mathcal{L}^{\kappa}f(x):= \lim_{{\varepsilon} \downarrow 0} {\int}_{\{z \in \mathbb{R}^{d}: |z|>{\varepsilon}\}} (f(x+z)-f(x))\kappa(x,z)J(z)\, dz\, , $$
where κ(x, z) is a Borel function on \(\mathbb {R}^{d}\times \mathbb {R}^{d}\) satisfying 0 < κ 0κ(x, z) ≤ κ 1, κ(x, z) = κ(x,?z) and |κ(x, z) ? κ(y, z)|≤ κ 2|x ? y| β for some β ∈ (0, 1]. We construct the heat kernel p κ (t, x, y) of \(\mathcal {L}^{\kappa }\), establish its upper bound as well as its fractional derivative and gradient estimates. Under an additional weak upper scaling condition at infinity, we also establish a lower bound for the heat kernel p κ .
  相似文献   

18.
19.
In this paper, we are concerned with the oscillation of second order superlinear differential equations of the form
(a(t)y(t))+p(t)y(t)+q(t)f(y(t))=0.  相似文献   

20.
Let (X, d) be a locally compact separable ultrametric space. Let D be the set of all locally constant functions having compact support. Given a measure m and a symmetric function J(x, y) we consider the linear operator LJf(x) = ∫(f(x) ? f(y)) J(x, y)dm(y) defined on the set D. When J(x, y) is isotropic and satisfies certain conditions, the operator (?LJ, D) acts in L2(X,m), is essentially self-adjoint and extends as a self-adjoint Markov generator, its Markov semigroup admits a continuous heat kernel pJ (t, x, y). When J(x, y) is not isotropic but uniformly in x, y is comparable to isotropic function J(x, y) as above the operator (?LJ, D) extends in L2(X,m) as a self-adjointMarkov generator, its Markov semigroup admits a continuous heat kernel pJ(t, x, y), and the function pJ(t, x, y) is uniformly comparable in t, x, y to the function pJ(t, x, y), the heat kernel related to the operator (?LJ,D).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号