首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC/MS) method was developed using experimental designs to quantify the flavor of commercial Cheddar cheese and enzyme-modified Cheddar cheese (EMCC). Seven target compounds (dimethyl disulfide, hexanal, hexanol, 2-heptanone, ethyl hexanoate, heptanoic acid, delta-decalactone) representative of different chemical families frequently present in Cheddar cheese were selected for this study. Three types of SPME fibres were tested: Carboxen/polydimethylsiloxane (CAR/PDMS), polyacrylate (PA) and Carbowax/divinylbenzene (CW/DVB). NaCl concentration and temperature, as well as extraction time were tested for their effect on the HS-SPME process. Two series of two-level full factorial designs were carried out for each fibre to determine the factors which best support the extraction of target flavors. Therefore, central composite designs (CCDs) were performed and response surface models were derived. Optimal extraction conditions for all selected compounds, including internal standards, were: 50 min at 55 degrees C in 3M NaCl for CAR/PDMS, 64 min at 62 degrees C in 6M NaCl for PA, and 37 min at 67 degrees C in 6M NaCl for CW/DVB. Given its superior sensitivity, CAR/PDMS fibre was selected to evaluate the target analytes in commercial Cheddar cheese and EMCC. With this fibre, calibration curves were linear for all targeted compounds (from 0.5 to 6 microg g(-1)), except for heptanoic acid which only showed a linear response with PA fibres. Detection limits ranged from 0.3 to 1.6 microg g(-1) and quantification limits from 0.8 to 3.6 microg g(-1). The mean repeatability value for all flavor compounds was 8.8%. The method accuracy is satisfactory with recoveries ranging from 97 to 109%. Six of the targeted flavors were detected in commercial Cheddar cheese and EMCC.  相似文献   

2.
In headspace (HS) analysis, a fumigant is released from a commodity into a gas-tight container by grinding, heating, or microwaves. A new technique uses HS-solid-phase microextraction (SPME) for additional preconcentration of fumigant. HS-SPME was tested for detection of phosphine (PH3), chosen for examination because of its wide use on stored commodities. PH3 was applied to 50 g wheat in separate 250 mL sealed flasks, which were equipped either with a septum for conventional HS analysis or with one of four HS-SPME fibers [100 microm polydimethylsiloxane (PDMS), 85 microm carboxen (CAR)/PDMS, 75 microm CAR/PDMS, and 65 pm PDMS/divinylbenzene (DVB)]. The wheat was heated at 45 degrees C for 20 min. In conventional HS analysis, a gaseous aliquot (80 pL) was taken from the HS and injected into the GC instrument. In the HS-SPME procedure, the fiber was removed from the HS and exposed in the heated injection port of the GC instrument. In all cases, PH3 was determined under the same chromatographic conditions with a GC pulsed flame photometric detector. In a comparison of the efficacy of the fibers, the bipolar fibers (CAR/PDMS and PDMS/DVB) contained more PH3 than the aliquot in the conventional HS analysis; larger size bipolar fibers extracted PH3 more efficiently than smaller fibers (e.g., 85 > 75 > 65 microm). The nonpolar fiber (PDMS) contained no PH3. Four fortification levels of PH3 on wheat were tested: 0.01, 0.05, 0.1, and 0.3 microg/g. The response of each bipolar fiber increased with the fortification levels, but the conventional HS analysis detected no fumigant at the lowest fortification level of 0.01 mg/g. Under the conditions of the validation study, the LOD was in the range of 0.005-0.01 ng PH3/g wheat.  相似文献   

3.
Pontes M  Marques JC  Câmara JS 《Talanta》2007,74(1):91-103
The volatile composition from four types of multifloral Portuguese (produced in Madeira Island) honeys was investigated by a suitable analytical procedure based on dynamic headspace solid-phase microextraction (HS-SPME) followed by thermal desorption gas chromatography-quadrupole mass spectrometry detection (GC-qMS). The performance of five commercially available SPME fibres: 100 μm polydimethylsiloxane, PDMS; 85 μm polyacrylate, PA; 50/30 μm divinylbenzene/carboxen on polydimethylsiloxane, DVB/CAR/PDMS (StableFlex); 75 μm carboxen/polydimethylsiloxane, CAR/PDMS, and 65 μm carbowax/divinylbenzene, CW/DVB; were evaluated and compared. The highest amounts of extract, in terms of the maximum signal obtained for the total volatile composition, were obtained with a DVB/CAR/PDMS coating fibre at 60 °C during an extraction time of 40 min with a constant stirring at 750 rpm, after saturating the sample with NaCl (30%). Using this methodology more than one hundred volatile compounds, belonging to different biosynthetic pathways were identified, including monoterpenols, C13-norisoprenoids, sesquiterpenes, higher alcohols, ethyl esters and fatty acids. The main components of the HS-SPME samples of honey were in average ethanol, hotrienol, benzeneacetaldehyde, furfural, trans-linalool oxide and 1,3-dihydroxy-2-propanone.  相似文献   

4.
The volatile components of yak butter were isolated by solvent-assisted flavour evaporation (SAFE), simultaneous distillation extraction (SDE; dichloromethane and diethyl ether as solvent, respectively) and headspace solid-phase microextraction (HS-SPME; CAR/PDMS, PDMS/DVB and DVB/CAR/PDMS fibre extraction, respectively) and were analysed by GC/MS. A total of 83 volatile components were identified under six different conditions, including 28 acids, 12 esters, 11 ketones, 10 lactones, 10 alcohols, 4 other compounds, 2 aldehydes, 2 unsaturated aldehydes, 1 furan, 1 sulphur-containing compound, 1 unsaturated alcohol and 1 unsatruated ketone. Among them, 51 were identified by SAFE, 58 by SDE (45 with dichloromethane as solvent and 41 with diethyl ether as solvent) and 40 by HS-SPME (26 with CAR/PDMS; 26 with PDMS/DVB and 32 with DVB/CAR/PDMS). Three pretreatment methods were compared to show that the volatile components obtained using different methods varied greatly, both in terms of categories and in content. Therefore, a multi-pretreatment method should be adopted, together with GC/MS. A total of 25 aroma-active compounds were detected by gas chromatography-olfactometry, among which 20 aroma-active compounds were found by SDE (14 with dichloromethane as solvent and 14 with diethyl ether as solvent) and 17 by SAFE.  相似文献   

5.
Headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography with ion trap mass spectrometric detection and with atomic emission detection (GC-AED) was employed to identify possible odor-impact volatile organic compounds in cupuassu (Theobroma grandiflorum Spreng) liquor, as well as to quantify alkylpyrazines present in these samples. SPME fibers coated with 100 microm polydimethylsiloxane (PDMS), 65 microm PDMS-divinylbenzene (DVB) and 75 microm Carboxen (CAR)-PDMS were tested, the later being chosen for the optimized extraction procedure. The principal compounds found in the sample headspace were 3-methylbutanal, dimethylsulfide, dimethyldisulfide, beta-linalool and several alkylpyrazines (notably tetramethylpyrazine). The procedure for quantitation of the alkylpyrazines, using GC-AED for their separation and detection, allowed the detection of microg g(-1) levels of the analytes in the samples, with acceptable precision (R.S.D. less than 10%).  相似文献   

6.
建立了一种快速简便地测定酱油中挥发性风味成分的顶空固相微萃取(HS-SPME)-气相色谱-质谱法(GC-MS)。以2-辛醇为内标,考察了萃取头、萃取时间、离子强度、萃取温度对酱油样品中挥发性风味物质萃取的影响。该方法对酱油中常见挥发性风味成分的测定有良好的重复性和回收率,对常见挥发性物质的定量比较准确。优化的HS-SPME条件为:涂层厚度为85 μm聚丙烯酸酯(PA)萃取纤维头,于45 ℃、NaCl质量浓度为250 g/L下对酱油样品顶空吸附40 min,于250 ℃下解吸2 min后进行GC-MS分离鉴定。酱油样品的分析结果表明,其挥发性风味物质中含量较高的是醇、酸、酯和酚类,此外还有一些羰基化合物和杂环化合物。  相似文献   

7.
A solid-phase microextraction (SPME) method for the simultaneous determination of a large number of pesticides (46) with a wide range of polarities and chemical structures (organochlorine, organophosphorous, triazines, pyrethroids and others) in water samples by GC-MS has been developed. Three different fibres and parameters that influence the extraction and desorption efficiency were studied. The selected conditions were: a 60 microm polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibre, 45 min of extraction time, sample agitation and temperature control at 60 degrees C; neither pH adjustment nor ionic strength correction were applied. Good detection limits, linearity and repeatability were obtained with this method for the 46 pesticides studied. The method was validated for 29 pesticides following the recommendations of the international norm ISO/IEC 17025 including the calculation of the uncertainties. The detection limits ranged from 4 to 17 ng l(-1). Furthermore, repeatability (6.9-20.5%) and intermediate precision (4.5-19.7%) were shown to be satisfactory. To validate matrix effects for drinking and surface water analytical recoveries were calculated for these matrices. The accuracy of the method was also evaluated by participating in a proficiency inter-laboratory test.  相似文献   

8.
A dynamic headspace solid-phase microextraction (HS-SPME) and gas chromatography coupled to ion trap mass spectrometry (GC-(IT)MS) method was developed and applied for the qualitative determination of the volatile compounds present in commercial whisky samples which alcoholic content was previously adjusted to 13% (v/v). Headspace SPME experimental conditions, such as fibre coating, extraction temperature and extraction time, were optimized in order to improve the extraction process. Five different SPME fibres were used in this study, namely, poly(dimethylsiloxane) (PDMS), poly(acrylate) (PA), Carboxen-poly(dimethylsiloxane) (CAR/PDMS), Carbowax-divinylbenzene (CW/DVB) and Carboxen-poly(dimethylsiloxane)-divinylbenzene (CAR/PDMS/DVB). The best results were obtained using a 75 microm CAR/PDMS fibre during headspace extraction at 40 degrees C with stirring at 750 rpm for 60 min, after saturating the samples with salt. The optimised methodology was then applied to investigate the volatile composition profile of three Scotch whisky samples--Black Label, Ballantines and Highland Clan. Approximately seventy volatile compounds were identified in the these samples, pertaining at several chemical groups, mainly fatty acids ethyl esters, higher alcohols, fatty acids, carbonyl compounds, monoterpenols, C13 norisoprenoids and some volatile phenols. The ethyl esters form an essential group of aroma components in whisky, to which they confer a pleasant aroma, with "fruity" odours. Qualitatively, the isoamyl acetate, with "banana" aroma, was the most interesting. Quantitatively, significant components are ethyl esters of caprilic, capric and lauric acids. The highest concentration of fatty acids, were observed for caprilic and capric acids. From the higher alcohols the fusel oils (3-methylbutan-1-ol and 2.phenyletanol) are the most important ones.  相似文献   

9.
Ventanas S  Ruiz J 《Talanta》2006,70(5):1017-1023
Analysis of nitrosamine (NA) standards in a model system was carried out by extraction using SPME coupled to a direct extraction device (DED) and subsequent GC/MS in selected ion monitoring mode. Gelatine (20%, w/v) systems of a NA standard (10 μg L−1) were prepared, in order to mimic food protein matrix systems such as meat and meat products, fish and so on. Different SPME fibre coatings were tested Both divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) and carboxen/polydimethylsiloxane (CAR/PDMS) fibres coupled to DED satisfactorily extracted all nine NA included in the studied standard (EPA 8270 nitrosamines mix, Sigma–Aldrich) from the gelatine system at 25 °C without any sample manipulation. Values of reproducibility, linearity and limit of detection for each type of fibre are reported. SPME-DED appears as a rapid, non-destructive technique for preliminary screening of the presence of toxic substances such as NA in solid foods.  相似文献   

10.
Despite the continuing development of SPME (solid-phase microextraction) fibre coatings, their selection presents some difficulties for analysts in choosing the appropriate fibre for a certain application. There are two distinct types of SPME coatings available commercially. The most widely used are poly(dimethylsiloxane) (PDMS) and poly(acrylate) (PA). Supelco has developed new mixed phases consisting of porous polymer particles, either poly(divinylbenzene) (DVB) or Carboxen suspended in a matrix of PDMS or Carbowax for extracting analytes via adsorption. In addition to the nature of the extracting phase, the thickness of the polymeric film must be taken into account and, surprisingly, the construction of the fibres when apparently they bear the same coating, as it is the case of the three PDMS-DVB fibres available. Other fibre structure properties not well explored were identified and must be taken into consideration. To elucidate their extraction efficiency, three PDMS-DVB fibres, namely 60 microm for HPLC use, 65 microm for GC use and 65 microm StableFlex for GC use, were compared with regard to the extraction of 36 compounds included in four pesticide groups. The first was particularly suited for the extraction of organophosphorus pesticides and triazines whereas the StableFlex exhibited advantages in the analysis of organochlorine pesticides and pyrethroids. An explanation for the extraction differences is suggested based on the different structure of the fibres. Detection limits in the range of 1-10 ng/l for organochlorine pesticides, 1-30 ng/l for organophosphorus pesticides, 8-50 ng/l for triazines and 10-20 ng/l for pyrethroids were attained in a method using the 60 microm PDMS-DVB fibre. The fibre maintains its performance at well above 100 extractions with between-day precision below 10%.  相似文献   

11.
Trans-2-nonenal is an aldehyde contributing to an unpleasant off-flavor and odor of rancid butter in stored beer. The automated solid-phase microextraction technique (SPME) coupled with gas chromatography (GC) and solid-phase dynamic extraction (SPDE) coupled with gas chromatography were optimized and introduced to determine trans-2-nonenal in barley, malt and beer. Five types of SPME fibers coated with different stationary phases (100 μm PDMS, 65 μm PDMS/DVB, 85 μm CAR/PDMS, 50/30 μm DVB/CAR/PDMS, 85 μm PA) and two needles (PDMS, PDMS/AC) were compared and tested for their efficiencies in the headspace (HS) SPME and SPDE determination of trans-2-nonenal in barley, malt and beer. The highest extraction efficiency of HS-SPME was achieved with the PDMS/DVB fiber, and addition of 1.5 g of NaCl, extraction time was 20 min at 60 °C. The highest extraction efficiency of HS-SPDE was obtained with the PDMS needle, 15 extraction strokes at 60 °C and addition of 1.5 g of NaCl. Trans-2-nonenal was identified with the method of HS-SPME coupled gas chromatography-mass spectrometry (GC–MS); the samples were analyzed using the HS-SPME-GC-coupled gas chromatography-flame ionization detector (GC-FID) technique.  相似文献   

12.
This paper proposes a multiple headspace solid-phase microextraction (MHS-SPME) method coupled to gas chromatography-tandem mass spectrometry detection (GC/MS/MS) for the simultaneous determination of 2,4,6-trichloroanisole, 2,3,4,6-tetrachloroanisole, pentachloroanisole, 2,4,6-tribromoanisole, 4-ethylphenol, 4-ethylguaiacol, 4-vinylphenol and 4-vinylguaiacol in wines. These compounds are involved in the presence of "cork taint" and Brett character in wines. The MHS-SPME method is a modification of SPME developed for quantitative analysis that avoids possible matrix effects based on an exhaustive analyte extraction from the sample. After demonstrating the existence of matrix effect in the analysis of the target compounds by HS-SPME with a divinylbenzene/Carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fibre, the MHS-SPME method was developed and validated. The proposed method showed satisfactory linearity, precision and detection limits, all below the odour detection thresholds of the compounds in wine matrices. Good recoveries were observed for all compounds, always above 90%, and the repeatability obtained was considered acceptable, ranging between 2 and 11%. After checking the applicability of the method by comparing the results recorded with those obtained with the standard addition method, the method was applied successfully to the analysis of wine samples. To our knowledge, this is the first time that MHS-SPME combined with GC/MS/MS has been applied to simultaneously determine haloanisoles and volatile phenols in wine.  相似文献   

13.
In this study, a headspace solid-phase microextraction (HS-SPME) method, in combination with gas chromatography flame ionisation detector and gas chromatography-mass spectrometry, has been developed for use in the analysis of the volatile compounds of Teucrium flavum L. subsp. flavum, a plant whose particular fragrance is used in the preparation of flavoured wines, bitters and liqueurs, or as a substitute for hops in the flavouring of beer. The tested fibres were 100?μm poly(dimethylsiloxane) (PDMS), the 65?μm PDMS/divinylbenzene (DVB) and 50/30?μm DVB-carboxen-PDMS. The best fibre was found to be PDMS when working in the following conditions: 60°C temperature, 30?min extraction time, 30?mg sample amount, 1?mm sample particle size. The HS-SPME method permitted the identification (95.8-97.8%) of 76 (dry) and 66 (fresh) different volatiles. In addition, we discovered that the presence of water in the sample can enhance the absolute quantity of alcoholic compounds such as 1-octen-3-ol and reduce the presence of esters such as methyl geranate.  相似文献   

14.
The performance of three fibres for the headspace solid-phase microextraction (SPME) of di-2-ethylhexyl adipate (DEHA) and eight phthalates in water was investigated systematically under different extraction conditions. Good responses on the 65 microm polydimethylsiloxane/divinylbenzene (PDMS/DVB) SPME fibre were observed for DEHA and all phthalates. The polydimethylsiloxane (PDMS) SPME fibre had very poor responses for the lighter and slightly polar phthalates, dimethyl phthalate (DMP) and diethyl phthalate (DEP), while the divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) SPME fibre had very poor responses for the heavier and non-polar adipate and phthalates. The salt (NaCl) was found to increase the partitioning of DMP, DEP, diisobutyl phthalate (DiBP), di-n-butyl phthalate, and benzyl butyl phthalate (BBP) from water into the headspace, while partitioning of heavier adipate and phthalates from water into headspace was suppressed when the concentration of NaCl was above 10%. The automated headspace SPME methods were developed and validated under two different salting conditions (30% NaCl for DMP, DEP and BBP, and 10% for DEHA, DiBP, DBP, di-n-hexyl phthalate (DHP), di-2-ethylhexyl phthalate (DEHP), and di-n-octyl phthalate (DOP)). Linearity with R(2) values better than 0.9949 was observed for DEHA and eight phthalates over the range from 0.1 to 20 microg L(-1). Method detection limits ranged from 0.003 microg L(-1) for DOP to 0.085 microg L(-1) for BBP. Good repeatability was observed for DEHA and most phthalates with relative standard deviation (RSD) values less than 10%. The methods were used to analyse bottled water samples for DEHA and eight phthalates. DMP, DHP, BBP, DEHA and DOP were not detected in any samples. Concentrations of the other phthalates were low (around sub-ppb) except for DBP in the water from a polycarbonate bottle at 1.72 microg L(-1).  相似文献   

15.
The headspace solid-phase microextraction (HS-SPME) efficiencies from vegetable oil of the recently available Carboxen-poly(dimethylsiloxane) (PDMS) and divinylbenzene-Carboxen-PDMS fibres were found to be much greater than those of the PDMS fibre for a number of volatile contaminants. Using these Carboxen-based fibres, the commonly used HS-SPME equilibration times for aqueous matrices of 30-45 min at room temperature for a number of halogenated and aromatic analytes with volatilities ranging from 1,1-dichloroethylene to hexachlorobenzene were found to be insufficient for the effective extraction of the less volatile analytes from vegetable oil. HS-SPME at 100 degrees C for 45 min, followed by rapid cooling to 0 degrees C with a 10 min continuing extraction, however, significantly increased the SPME efficiencies for the less volatile analytes. Spiking solutions were prepared in vegetable oil instead of methanol as the latter was found to displace analytes from the Carboxen material. Using either of the Carboxen-based fibres and SPME at 100 degrees C, all the target analytes could be determined at low or sub-microg kg(-1) with repeatability < or =10%, even though an equilibrium SPME of the less volatile analytes was not achieved.  相似文献   

16.
A direct quantitative method is presented that is based upon the use of multiple headspace solid phase microextraction (HS-SPME) to monitor biogenic volatile organic compounds (BVOCs) released from a living leaf of Pelargonium hortorum in situ. Seventeen BVOCs were detected by GC-MS after a single SPME extraction using a CAR/DVB/PDMS fibre. An internal standard was employed to determine the absolute amounts of seven terpenoid compounds released from a P. hortorum leaf. The quantitative analysis was performed over two days, with extraction preformed for 20 min every 3 h. The amount of volatiles extracted varied with the time of day, with two maxima recorded at 14:00 (day 1) and 17:00 (day 2), corresponding to 236 and 277 ng of the seven terpenoids recorded, respectively. These results indicate that multiple HS-SPME in combination with an internal standard is a simple, quick, and quantitative technique for analysising BVOC emissions from a live plant sample.  相似文献   

17.
Dynamic headspace solid-phase microextraction (HS-SPME) followed by thermal desorption gas chromatography-quadrupole mass spectrometry analysis (GC-qMS), was used to investigate the aroma profile of different species of passion fruit samples. The performance of five commercially available SPME fibres: 65 μm polydimethylsiloxane/divinylbenzene, PDMS/DVB; 100 μm polydimethylsiloxane, PDMS; 85 μm polyacrylate, PA; 50/30 μm divinylbenzene/carboxen on polydimethylsiloxane, DVB/CAR/PDMS (StableFlex); and 75 μm carboxen/polydimethylsiloxane, CAR/PDMS; was evaluated and compared. Several extraction times and temperature conditions were also tested to achieve optimum recovery. The SPME fibre coated with 65 μm PDMS/DVB afforded the highest extraction efficiency, when the samples were extracted at 50 °C for 40 min with a constant stirring velocity of 750 rpm, after saturating the sample with NaCl (17%, w/v — 0.2 g). A comparison among different passion fruit species has been established in terms of qualitative and semi-quantitative differences in volatile composition. By using the optimal extraction conditions and GC-qMS it was possible to tentatively identify seventy one different compounds in Passiflora species: 51 volatiles in Passiflora edulis Sims (purple passion fruit), 24 in P. edulis Sims f. flavicarpa (yellow passion fruit) and 21 compounds in Passiflora mollissima (banana passion fruit). It was found that the ethyl esters comprise the largest class of the passion fruit volatiles, including 82.8% in P. edulis variety, 77.4% in P. edulis Sims f. flavicarpa variety and 39.9% in P. mollissima.The semi-quantitative results were then submitted to principal component analysis (PCA) in order to establish relationships between the compounds and the different passion fruit species under investigation.  相似文献   

18.
2-Ethyl hexanol from hydrolysed di-octyl-phthalate (DOP) may cause a secondary emission from building products such as PVC carpets and/or glues causing indoor air pollution. In the present study, a micro-scale headspace vial (MHV) method, earlier developed by us, was refined to study the degradation of DOP and di-isononyl phthalate (DINP) in humid and alkaline environments. By HS-SPME it was possible to extract the degradation products at low temperature, 35 °C, which limits the risks of unwanted degradation during sampling. Three different types of HS-SPME fibres were evaluated. The carbowax-divinyl benzene (CW/DVB) fibre had the highest extraction capacity of 2-ethyl-1-hexanol and 5-nonanol. Although significantly shorter extraction times could be used with the 7 μm and 30 μm poly-dimethylsiloxane (PDMS) fibres, the CW/DVB fibre was found to be the most suitable for these alcohols. Furthermore, it was found that pH of the alkaline environment strongly influences the formation of degradation products from DOP and DINP.  相似文献   

19.
刘敬科  张爱霞  李少辉  赵巍  张玉宗  邢国胜 《色谱》2017,35(11):1184-1191
为全面了解小米黄酒风味成分的构成和气味特征,优化了85μm聚丙烯酸酯(PA)、100μm聚二甲基硅氧烷(PDMS)、75μm碳分子筛(CAR)/PDMS、50/30μm二乙烯基苯(DVB)/CAR/PDMS萃取头提取小米黄酒风味成分的条件,采用顶空固相微萃取(headspace solid phase microextraction,HS-SPME)-气相色谱-质谱法(GC-MS)对风味成分进行定性、定量分析,并计算气味活性值(odor active value,OAV),同时利用OAV分析风味成分的气味特征和气味强度。结果显示:不同萃取头的最优萃取条件为样品量8 mL、萃取时间40 min、萃取温度60℃、NaCl添加量1.5 g。小米黄酒风味成分由醇、酯、含苯化合物、烃、酸、醛、酮、烯、酚和杂环类化合物构成,醇为主要风味成分。通过OAV确定了苯乙醇、苯乙烯、2-甲基萘、1-甲基萘、苯甲醛、苯乙醛、2-甲氧基-苯酚为小米黄酒气味特征成分,苯基乙醇、苯乙醛对气味贡献最大。PA和PDMS萃取头分别对极性和非极性化合物具有较好的吸附效果,CAR/PDMS和DVB/CAR/PDMS萃取头对中等极性化合物具有较好的吸附效果。该研究全面了解了小米黄酒风味成分的构成,为其产品开发及品质控制提供理论了依据。  相似文献   

20.
In the present study, a simple and sensitive methodology based on dynamic headspace solid-phase microextraction (HS-SPME) followed by thermal desorption gas chromatography with quadrupole mass detection (GC-qMSD), was developed and optimized for the determination of volatile (VOCs) and semi-volatile (SVOCs) compounds from different alcoholic beverages: wine, beer and whisky. Key experimental factors influencing the equilibrium of the VOCs and SVOCs between the sample and the SPME fibre, as the type of fibre coating, extraction time and temperature, sample stirring and ionic strength, were optimized. The performance of five commercially available SPME fibres was evaluated and compared, namely polydimethylsiloxane (PDMS, 100 μm); polyacrylate (PA, 85 μm); polydimethylsiloxane/divinylbenzene (PDMS/DVB, 65 μm); carboxen™/polydimethylsiloxane (CAR/PDMS, 75 μm) and the divinylbenzene/carboxen on polydimethylsiloxane (DVB/CAR/PDMS, 50/30 μm) (StableFlex).An objective comparison among different alcoholic beverages has been established in terms of qualitative and semi-quantitative differences on volatile and semi-volatile compounds. These compounds belong to several chemical families, including higher alcohols, ethyl esters, fatty acids, higher alcohol acetates, isoamyl esters, carbonyl compounds, furanic compounds, terpenoids, C13-norisoprenoids and volatile phenols. The optimized extraction conditions and GC-qMSD, lead to the successful identification of 44 compounds in white wines, 64 in beers and 104 in whiskys. Some of these compounds were found in all of the examined beverage samples.The main components of the HS-SPME found in white wines were ethyl octanoate (46.9%), ethyl decanoate (30.3%), ethyl 9-decenoate (10.7%), ethyl hexanoate (3.1%), and isoamyl octanoate (2.7%). As for beers, the major compounds were isoamyl alcohol (11.5%), ethyl octanoate (9.1%), isoamyl acetate (8.2%), 2-ethyl-1-hexanol (5.9%), and octanoic acid (5.5%). Ethyl decanoate (58.0%), ethyl octanoate (15.1%), ethyl dodecanoate (13.9%) followed by 3-methyl-1-butanol (1.8%) and isoamyl acetate (1.4%) were found to be the major VOCs in whisky samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号