首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用LP-MOCVD在Si(111)衬底上,以高温AIN为缓冲层,分别用低温GaN(LT-GaN)和偏离化学计量比富Ga高温GaN(HT-GaN)为过渡层外延生长六方相GaN薄膜。采用高分辨率双晶X射线衍射(DCXRD),扫描电子显微镜(SEM),原子力显微镜(AFM)和室温光致荧光光谱(RT-PL)进行分析。结果表明,有偏离化学计量比富Ga HT-GaN为过渡层生长的GaN薄膜质量和光致荧光特性均明显优于以LT-GaN为过渡层生长的GaN薄膜,得到GaN(0002)和(1012)的DCXRD峰,其半峰全宽(FWHM)分别为698s和842s,室温下的光致荧光光谱在361nm处有一个很强的发光峰,其半峰全宽为44.3meV。  相似文献   

2.
Photoreflectance spectroscopy was used to measure the barrier electric field strength F of as-grown AlGaN/GaN heterostructures on Si(111) substrate with two-dimensional electron gases in the temperature range from 80 up to 295 K. The Al-contents were in the range from 12 to 20%. Despite the difference of Al-contents and the large temperature variation we find only minute changes of F. This behaviour is explained by an almost constant strain state and thus a constant piezoelectric polarisation, which was concluded from the analysis of the GaN free excitonic transitions observed by photoluminescence excitation spectroscopy. Self-consistent conduction band calculations point to a pinning of the potential of the bare surface at 0.6 V, attributed to a large density of surface donor states.  相似文献   

3.
4.
Metal Organic Vapour Phase Epitaxy (MOVPE) of AlN and GaN layers at a temperature of 1080 C were performed on porous Si(111) and Si(111) substrates. The thermal stability of porous silicon (PS) is studied versus growth time under AlN and GaN growth conditions. The surface morphology evolution of the annealed PS is revealed by scanning electron microscopy (SEM). Porous Si(111) with low porosity (40%) is more thermally stable than porous Si(100) with relatively high porosity (60%).AlN layers with various thicknesses were grown under the same conditions on the two substrates. Morphological properties of AlN were studied by atomic force microscopy (AFM) and compared taking into account the two different surfaces of the substrates. The two growth kinetics of AlN were found to be different due to the initial surface roughness of the PS substrate. The effect of AlN buffer morphology on the qualities of subsequent GaN layers is discussed. Morphological qualities of GaN layers grown on PS are improved compared to those obtained on porous Si(100) but are still less than those grown on Si substrate.  相似文献   

5.
GaPN-layers with phosphorus concentrations up to 4.4% were grown on GaN/Si(111) substrates by metal organic vapour phase epitaxy. The growth temperature and phosphine flows were varied in order to investigate the growth characteristics of the GaPN layers. The layers were investigated by X-ray diffraction, transmission electron diffraction, energy dispersive X-ray measurements, scanning electron microscopy, transmission electron microscopy, and photoluminescence. Singlecrystalline wurtzite-type epitaxial GaPN(0001) layers were obtained for x<0.05. For such layers X-ray and transmission electron diffraction measurements show a reduction of both the c- and a-latticeparameters without a change of the wurtzite-type crystal structure, thus indicating that phosphorus is incorporated as P3+ or P5+ likely substituting the Gallium lattice sites of the GaN-crystal, i.e. the formation of Ga1-xPxN and not GaN1-xPx as might be expected. For higher phosphorous contents phase separation effects and a variety of different phases were observed. PACS 61.43.Dq; 68.55.Jk; 81.15.Gh; 81.05.Ea  相似文献   

6.
Monolayers of Co were prepared by pulsed laser deposition (PLD) and thermal deposition (TD) on Si(111) substrates. The surface structure and morphology were studied as a function of annealing temperature with scanning tunneling microscopy and low-energy electron diffraction (LEED). Comparing PLD to TD in the monolayer regime, we find surface phases with lower Co content in the top layer for annealing temperatures below 500 °C, indicating an implantation of Co into the Si substrate. The implanted Co leads to an increased intermixing of Co and Si and a higher density of nucleation centers for Co multilayers produced by PLD compared to TD. Multilayer PLD films therefore show an improved film quality, which is detected by an increased intensity of the LEED reflectivity. PACS 68.37.Ef; 61.14.Hg; 68.55.-a  相似文献   

7.
刘战辉  张李骊  李庆芳  张荣  修向前  谢自力  单云 《物理学报》2014,63(20):207304-207304
分别在Si(110)和Si(111)衬底上制备了In Ga N/Ga N多量子阱结构蓝光发光二极管(LED)器件.利用高分辨X射线衍射、原子力显微镜、室温拉曼光谱和变温光致发光谱对生长的LED结构进行了结构表征.结果表明,相对于Si(111)上生长LED样品,Si(110)上生长的LED结构晶体质量较好,样品中存在较小的张应力,具有较高的内量子效率.对制备的LED芯片进行光电特性分析测试表明,两种衬底上制备的LED芯片等效串联电阻相差不大,在大电流注入下内量子效率下降较小;但是,相比于Si(111)上制备LED芯片,Si(110)上LED芯片具有较小的开启电压和更优异的发光特性.对LED器件电致发光(EL)发光峰随驱动电流的变化研究发现,由于Si(110)衬底上LED结构中阱层和垒层存在较小的应力/应变而在器件中产生较弱的量子限制斯塔克效应,致使Si(110)上LED芯片EL发光峰随驱动电流的蓝移量更小.  相似文献   

8.
Spectral dependences of refractive and absorption indices n(), k() (=1.2-4.4 eV) and the transversal Kerr effect δ() (=0.5-4.4 eV) in In(Ga)MnAs layers fabricated by laser deposition have been investigated. Spectra of the diagonal and off-diagonal components of the dielectric permittivity tensor of these layers have been calculated. Comparison of the spectral dependences δ(), ε′() and ε2×()2 of the In(Ga)MnAs layers with similar spectra for MnAs has been carried out. Particular features in the spectra of the In(Ga)MnAs layers have been explained by a competition of contributions of the In1−x(Ga1−x)MnxAs host and MnAs inclusions.  相似文献   

9.
Thin (6–12 nm) epitaxial MnAs films were MBE-grown on Si(111) substrates under different technological conditions. The films feature essentially different surface morphology. This manifests itself in the formation, on the silicon surface, of hexagonal-shaped crystallites, whose dimensions vary depending on the growth conditions. The volume and surface magnetic properties of the films were studied using the magnetooptical Kerr effect and optical second harmonic generation. The Kerr effect was found to scale linearly with the effective thickness of the magnetic layer. The thickness of the magnetically disordered transition layer formed near the interface with the substrate was estimated. The surface and volume hysteresis properties of the films were found to be different. A contribution to the second-harmonic intensity was observed which is an odd function of magnetization. This effect originates from the interference of the magnetic and nonmagnetic contributions to the nonlinear polarization.  相似文献   

10.
Self-assembled columnar AlGaN/GaN nanocavities, with an active region of GaN quantum disks embedded in an AlGaN nanocolumn and cladded by top and bottom AlN/GaN Bragg mirrors, were grown. The nanocavity has no cracks or extended defects, due to the relaxation at the Si interface and to the nanocolumn free-surface to volume ratio. The emission from the active region matched the peak reflectivity by tuning the Al content and the GaN disks thickness. Quantum confinement effects that depend on both the disk thickness and the inhomogeneous strain distribution within the disks are clearly observed.  相似文献   

11.
In this paper, we report on the characteristics of GaN films grown on Si(111) at a low temperature (200 °C) by electron cyclotron resonance (ECR) plasma-assisted metalorganic chemical vapor deposition (PA-MOCVD). Structural analysis of the GaN films was performed by using scanning electron microscopy (SEM), atomic force miscroscopy (AFM), X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), and Rutherford backscattering spectrometry (RBS). Post deposition analysis revealed high quality crystalline GaN was obtained at this low temperature. Electrical analysis of the GaN films was done by using current-voltage (I-V) measurements where electrical characterizations were carried on GaN/Si heterojunction and Schottky barrier diodes. Rectification behaviour was observed for the isotype GaN/Si (n-n) heterojunction. Ideality factors and Schottky barrier heights for Ni and Cr Schottky barriers on GaN, were deduced to be 1.4 and 1.7; and 0.62 and 0.64 eV, respectively.  相似文献   

12.
Thin nano-structured carbon films have been deposited in vacuum by pulsed laser ablation, from a rotating polycrystalline graphite target, on Si 〈1 0 0〉 substrates, kept at temperatures ranging from RT to 800 °C. The laser ablation was performed by a Nd:YAG laser, operating in the near IR (λ = 1064 nm).X-ray diffraction analysis, performed at grazing incidence angle, both in-plane (ip-gid) and out-of-plane (op-gid), has shown the growth of oriented nano-sized graphene particles, characterised by high inter-planar stacking distance (d? ∼ 0.39 nm), compared to graphite. The film structure and texturing are strongly related both to laser wavelength and substrate temperature: the low energy associated to the IR laser radiation (1.17 eV) generates activated carbon species of large dimensions that, also at low T (∼400 °C), easy evolve toward more stable sp2 aromatic bonds, in the plume direction. Increasing temperature the nano-structure formation increases, causing a further aggregation of aromatic planes, voids formation, and a related density (by X-ray reflectivity) drop to very low values. SEM and STM show for these samples a strongly increased macroscopic roughness. The whole process, mainly at higher temperatures, is characterised by a fast kinetic mode, far from equilibrium and without any structural or spatial rearrangement.  相似文献   

13.
High-quality gallium nitride (GaN) films were prepared on Si(111) substrates by sputtering post-annealing-reaction technique. XRD, XPS, and SEM measurement results indicate that polycrystalline GaN with hexagonal structure was successfully prepared. Intense room- temperature photoluminescence that peaked at 354 nm of the films is observed. The bandgap of these films has a blueshift with respect to bulk GaN.  相似文献   

14.
A mass of GaN nanowires has been successfully synthesized on Si(111) substrates by magnetron sputtering through ammoniating Ga2O3/Co films at 950℃. X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscope and Fourier transformed infrared spectra are used to characterize the samples. The results demonstrate that the nanowires are of single-crystal GaN with a hexagonal wurtzite structure and possess relatively smooth surfaces. The growth mechanism of GaN nanowires is also discussed.  相似文献   

15.
Low-energy electron diffraction and differential reflectance spectroscopy are used to study the self-formation of chromium disilicide (CrSi2) nanoislands on a Si(111) surface. The semiconductor properties of the islands show up even early in chromium deposition at a substrate temperature of 500°C, and the two-dimensional growth changes to the three-dimensional one when the thickness of the chromium layer exceeds 0.06 nm. The maximal density of the islands and their sizes are determined. The MBE growth of silicon over the CrSi2 nanoislands is investigated, an optimal growth temperature is determined, and 50-nm-thick atomically smooth silicon films are obtained. Ultraviolet photoelectron spectroscopy combined with the ion etching of the specimens with embedded nanocrystallites demonstrates the formation of the valence band, indicating the crystalline structure of the CrSi2. Multilayer epitaxial structures with embedded CrSi2 nanocrystallites are grown.  相似文献   

16.
利用等离子辅助分子束外延系统研究了生长在硅(111)衬底的氮化镓pn结,并将其应用于光学器件.硅和镁分别用做n和p掺杂,反射高能电子衍射图像显示氮化镓pn结层具有良好的表面形貌,结层厚度约为0.705 nm,且为六方结构.室温下X射线衍射对称摇摆曲线中(0002)面的ω/2θ显示,半峰宽为0.340,说明氮化镓pn结质量高.另外,在硅和镁掺杂样品中没有A1峰淬灭.光致发光光谱表明pn结样品具有良好的光学性能.镍和铝作为分别作为正面和背面的电极接触应用于光学器件,该器件的电流电压特性显示了典型的异质结整流特性.正向接触镍经过氮气中退火处理10 min,结果表明,600 oC处理的样品比400 oC处理和未经处理的样品具有更高的增益.  相似文献   

17.
18.
19.
We demonstrated the high resolution imaging of the organic molecules using noncontact atomic force microscopy in ultrahigh vacuum. The sample was C60 molecules deposited on the Si(111)-7×7 reconstructed surface. When the thickness of the C60 film was submonolayer, we could image some isolated C60 molecules and the reconstructed Si surface simultaneously. However, the imaging was highly unstable not only because of the large structure but also due to the large difference between the interaction forces on the molecules and on the Si surface. On the other hand, when the thickness of the C60 molecules was almost monolayer, individual molecules could be stably imaged.  相似文献   

20.
GaN films have been grown on Si(111) substrates with a thin AlN buffer layer using pulsed laser deposition (PLD) assisted by gas discharge. The crystalline quality, surface morphology and optoelectronic properties of the deposited films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL) spectroscopy, and room-temperature Van der Pauw–Hall measurements. The influence of the deposition temperature in the range 637–1037 K on the crystallinity of GaN films, the laser incident energy in the range 150–250 mJ/pulse on the surface morphology and the optoelectronic properties were systematically studied. The XRD analysis shows that the crystalline quality of the GaN films improves with increasing deposition temperature to 937 K, but further increase of the deposition temperature to 1037 K leads to the degradation of the crystalline quality. AFM results show that the surface roughness of the GaN films can be decreased with increasing laser incident energy to 220 mJ/pulse. Further increase of the laser incident energy to 250 mJ/pulse leads to an increase in the surface roughness. The optoelectronic properties of GaN films were also improved by increasing the laser incident energy to 220 mJ/pulse. GaN films which have a n-type carrier concentration of 1.26×1017 cm-3 and a mobility of 158.1 cm2/Vs can be deposited at a substrate temperature of 937 K, a deposition pressure of 20 Pa and a laser incident energy of 220 mJ/pulse. Their room-temperature PL spectra exhibit a strong band-edge emission at 365 nm. PACS 81.15.Fg; 81.05.Ea; 78.20.-e; 73.61.Ey; 78.66.Fd  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号