首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a line profile study for two lines in the 2ν3 band of CH4 recorded with a frequency stabilized tunable diode laser spectrometer. The broadening and narrowing (Dicke effect) parameters of the R(0) line perturbed by N2, O2, and He are derived from a simultaneous fitting of spectra at pressures from 20 to 300 Torr by using the soft and hard collision models. These parameters are determined for the A and F components of the unresolved R(3) manifold perturbed by N2, Ar, and He from the line profile analysis of spectra at pressures between 50 and 500 Torr. The line mixing effect between the two F components is also taken into account and the absorber speed dependent effect on broadening is estimated for N2 and Ar.  相似文献   

2.
This paper is devoted to the measurement of pressure shift and broadening parameters of water-vapor lines of the pure rotational transition 110-101 in the ground vibrational state of H216O at 556.936 GHz, H217O at 552.02 GHz, H218O at 547.676 GHz, and the vibrationally excited state v2=1 line of H216O at 658.003 GHz. The broadening coefficients of the line at 556.936 GHz (for N2 and O2 as perturbing gases) coincide within the errors with the values obtained recently by Seta et al. [Pressure broadening coefficients of the water vapor lines at 556.936 and 752.033 GHz. JQSRT 2008;109:144-50] by means of a very different technique (THz-TDS). Pressure shift and broadening for other lines were measured for the first time. Comparison of our results with previous measurements and theoretical calculations is presented.  相似文献   

3.
The pressure broadening and shift rates of the rubidium D2 absorption line 52S1/2→52P3/2 (780.24 nm) with CH4, C2H6, C3H8, n-C4H10, and He were measured for pressures ≤80 Torr using high-resolution laser spectroscopy. The broadening rates γB for CH4, C2H6, C3H8, n-C4H10, and He are 28.0, 28.1, 30.5, 31.3, and 20.3 (MHz/Torr), respectively. The corresponding shift rates γS are −8.4, −8.8, −9.7, −10.0, and 0.39 (MHz/Torr), respectively. The measured rates of Rb for the hydrocarbon buffer gas series of this study are also compared to the theoretically calculated rates of a purely attractive van der Waals difference potential. Good agreement is found to exist between measured and theoretical rates.  相似文献   

4.
The oxygen fine structure line 1− at 118.75 GHz was studied by two spectrometers at low (0.2-3.5 Torr) and high (atmosphere) pressures in air and pure oxygen. Improvement in the spectrometer with BWO and acoustic detector included use of a powerful (more than 40 mW) radiation source. Improvement in the modern resonator spectrometer included exclusion of apparatus function by sample substitution and a wider (110-130 GHz) scanned frequency range. As a result, the 1− oxygen line was observed by both spectrometers with high (up to 450) signal-to-noise ratio which permitted precise measurements of the line parameters. The investigation separated linear- and quadratic-with-pressure displacement of the line center. The line mixing coefficient responsible for apparent quadratic dependence of the center frequency on pressure was measured experimentally for the first time for this line. The line mixing coefficient was measured at 297 K as −4.62(38)×10−5 Torr−1 for pure oxygen and −5.9(29)×10−5 Torr−1 for air, compared to the previously calculated value −3.1×10−5 Torr−1. Linear dependence of the line center frequency on pressure does not exceed ±20 kHz/Torr for air and ±10 kHz/Torr for pure oxygen. Refined values of line broadening were obtained. Integral intensity of the line was measured. A comparison with the previous investigations is presented. Inconsistencies in published data about pressure line shifts of oxygen molecule spectral lines are discussed.  相似文献   

5.
Precise N2, O2, H2, Ar, He, and self-broadenings and shifts have been obtained for Q- and R-branch transitions in the ν1 fundamental band of ammonia from simultaneous fits of low-noise, high-resolution difference-frequency laser spectra at pressures from 0.07 to 27 kPa (0.5-200 Torr). Observed lineshapes exhibit significant deviations from the conventional Voigt profile, which may be attributed to Dicke narrowing and/or speed-dependent broadening. At the higher pressures, line mixing is evident and must be included in the fits. For self-broadening, line mixing is dominated by collisional tunneling transitions, whereas for the non-polar buffers, rotational relaxation among selected K states is the primary mixing mechanism.  相似文献   

6.
The absorption spectra of carbon dioxide (isotope 626, natural abundance in air, ambient temperature) have been studied at total pressures 68-570 Torr with spectral resolution 0.003-0.005 cm−1. The spectra were measured in the spectral domain of 2273-2393 cm−1 by FTIR spectrometer Bruker IFS 125 HR equipped with White-type multipass cell (6.4-41.6 m) and with a cell having 10 cm optical path length. Pressure broadening and shift coefficients were obtained from a series of spectra by means of a nonlinear least-squares spectral fitting technique for the lines of the (00011)←(00001) band with rotational quantum number up to J=82. For fitting of the individual line shapes, we used the Voigt profile with pre-calculated Doppler broadening parameter. The experimental pressure broadening and shift coefficients are compared with the values available in spectroscopic databases HITRAN 2008 and Carbon Dioxide Spectroscopic Databank (CDSD-296) and with other experimental values reported in the literature.  相似文献   

7.
The dependence of pressure broadening upon hyperfine component in the P(10) and P(70) lines of the (17,1) band of the I2 X1Σ(0g+)→B3Π(0u+) has been studied using laser saturation spectroscopy. By limiting absorption to the zero velocity group, Doppler broadening is removed, lineshapes with widths (FWHM) <9 MHz are detectable, and collision-induced broadening is measured at pressures of 0.2-1.2 Torr. The rates for broadening by argon are 8.3±0.3 and 10.7±0.4 MHz/Torr for the P(70) and P(10) lines, respectively. No significant variation in broadening rates is observed for the 15 hyperfine components of these even rotational lines. The effects of velocity cross-relaxation introduce a broad baseline into the spectra, which is strongly dependent on rotational state, pressure, and laser modulation frequency. The observed broadening rates correlate well with prior measurements and the polarizability of the collision partner.  相似文献   

8.
Low pressure measurements of broadening parameters of the 118.75 GHz fine structure line of oxygen molecule have been made by a BWO-based spectrometer with acoustic detector (RAD) at room temperature. Pressure broadening parameters were obtained for the buffer gases O2, N2, Ne, He, Ar, H2O, CO2, and CO and have the following values 2.23 ± 0.01, 2.245 ± 0.02, 1.375 ± 0.02, 1.62 ± 0.03, 2.005 ± 0.02, 2.52 ± 0.04, 2.66 ± 0.08, and 2.31 ± 0.05 MHz/Torr, respectively. Measured central frequency is 118 750.340 ± 0.007 MHz. The central frequencies and broadenings by O2 and N2 of fine structure lines 1+, 5, 7+, 11+, and 15 belonging to the 60-GHz band are also measured. Comparison of previous and recent data on electronic, rotational, and fine structure lines broadenings reveals their close values (within 10%) and dependencies on corresponding rotational quantum numbers for these different oxygen spectra stretching from millimeter through submillimeter up to the optical bands. Such similarity could be used for estimation of the broadenings of not measured yet oxygen lines.  相似文献   

9.
The air induced broadening coefficients of the pure rotational transitions of H2O at 556.936 GHz (110←101), and 752.033 GHz (211←202) were measured by terahertz time-domain spectroscopy. The air broadening coefficient was determined to be for the 556.936 GHz line and for the 752.033 GHz line, respectively. The present broadening coefficients for the 556.936 GHz water line are significantly smaller than those of Markov and Krupnov [Measurements of the pressure shift of the 1(10)-1(01) water line at 556.936 GHz produced by mixtures of gases. J Mol Spect 1995:172;211-4] but relatively close to the values of the HITRAN database. The measured data may improve the accuracy of the abundance of water vapor retrieved from spectra obtained by the Odin/SMR satellite instrument. The effect on the satellite retrieval processing is discussed.  相似文献   

10.
In this paper, we present a line profile study of the R (0) line in the ν4 band of methane diluted in nitrogen and oxygen, from room temperature to 153 K. The measurements were performed over a total pressure range from 14 to 128 mbar. The collisional broadening and narrowing (Dicke effect) coefficients are derived from a fit of the experimental spectra by using the soft and hard collision models, taking into account the Dicke effect. For higher pressures, we have fitted the data with a model taking into account simultaneously the Dicke narrowing and the speed dependence effect. Finally, we have deduced the parameter n of the temperature dependence (inverse power law) of the broadening coefficients for the CH4-N2 and CH4-O2 gas mixtures.  相似文献   

11.
The pressure broadening of the 16O16O rotational line (N, J)=(3, 2)-(1, 2) at 425 GHz by oxygen and nitrogen perturbers at room temperatures have been reported. A spectrometer with BWO and acoustic detector was employed with a double magnetically shielded cell. The signal-to-noise ratio on the line was about 200-250 for self-broadening and about 100 for broadening by N2 measurements. The pressure-broadening parameters of the line at room temperature (23±0.5°C) were measured as 2.19±0.01 MHz/Torr for self-broadening and 2.215±0.02 MHz/Torr for broadening by nitrogen. Values of these parameters significantly (by about 25%) differ from ones previously measured by H. M. Pickett, E. A. Cohen, and D. E. Brinza, (Astrophys. J.248, L49-L51 (1981)). The results of the present work show the necessity for correction of broadening parameters of this line for the purpose of Earth atmosphere remote sensing. The central frequency of the transition (N, J)=(3, 2)-(1, 2) was measured as 424 763.023±0.020 MHz.  相似文献   

12.
In this work we present new experimental and theoretical values for the line broadening coefficients of the Q-branch Raman lines of autoperturbed N2. For the experimental determination of the coefficients, high resolution stimulated Raman spectra of the Q-branch of N2 at different pressures were obtained at 77, 194 and 298 K. Simultaneously, quantum dynamical calculations, performed on two potential energy surfaces, were carried out for the system between 77 and 298 K, rendering a set of theoretical line broadening coefficients that could be directly compared to those obtained from the present measurements and the previous ones. Within the limit of considering the colliding molecules distinguishable we discuss the ortho and para contributions to the pressure broadening cross-sections. Because such calculations are time consuming we indicate routes to circumvent this difficulty. We observe a reasonable agreement between theoretical and experimental values of the collisional line broadening coefficients at all the studied temperatures.  相似文献   

13.
We have measured the isotope shift between 41K and 39K in the 4s1/2 → 5p1/2 transition at 405 nm using saturation spectroscopy. Our measured isotope shift is 456.1 ± 0.8 MHz, implying a residual isotope shift (sum of specific mass shift and field shift) of −52.7 ± 0.8 MHz. We deduce a specific mass shift of −40 ± 5 MHz, which would imply that the 5p1/2 state has a considerably larger specific mass shift than the 4p1/2 state. We have in addition measured the 5p1/2 hyperfine splitting for 41K.  相似文献   

14.
We probed four closely spaced rovibrational water vapor absorption transitions near =7100 cm-1 using frequency-stabilized cavity ring-down spectroscopy. Room-temperature spectra were acquired for pure water vapor in the Doppler limit and for mixtures containing ≈6.6 μmol mol-1 of water vapor in N2 at total gas pressures ranging from 6.5 kPa to 53 kPa. By measuring Lamb dips for each transition, we demonstrated a resolution of 50 kHz and determined relative transition frequencies with an uncertainty <0.4 MHz over a 10 GHz range. Pressure-induced broadening, collisional narrowing coefficients of the component transitions and line areas were retrieved by fits of model line shapes to the measured spectra. Standard and advanced models were considered including those which incorporated the combined effects of collisional narrowing and speed-dependent line broadening and line shifting. By measuring water vapor concentration with a transfer standard hygrometer, we determined line intensities in terms of measured line areas with a combined relative uncertainty of 0.6%. PACS 33.20.-t; 33.70.Jg; 33.70.Fd; 42.62.Fi  相似文献   

15.
Oxygen pressure induced broadening and shifting coefficients for water vapor absorption lines in the 8600–9010 cm−1 region have been measured and calculated. The spectra were recorded with a Bruker IFS 125HR spectrometer at a spectral resolution of 0.01 cm−1 for lines with angular moment of the upper states up to 10. Calculations of line broadening and shifting coefficients are performed using a semi-empirical approach. The method is based on the impact theory of broadening, and includes the correction factors whose parameters can be determined by fitting the broadening or shifting coefficients to the experimental data. The comparison of our calculations with the experimental values argues that the semi-empirical method is quite acceptable for the determination of the water vapor absorption line profile parameters.  相似文献   

16.
This study provides the first direct experimental measurements of the off-diagonal relaxation matrix element coefficients for line mixing in air-broadened methane spectra for any vibrational band and the first off diagonal relaxation matrix elements associated with line mixing for pure methane in the ν2 + ν3 band of 12CH4. The speed-dependent Voigt profile with line mixing is used with a multispectrum nonlinear least squares curve fitting technique to retrieve the various line parameters from 11 self-broadened and 10 air-broadened spectra simultaneously. The room temperature spectra analyzed in this work are recorded at 0.011 cm−1 resolution with the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory, Kitt Peak, Arizona. The off-diagonal relaxation matrix element coefficients of ν2 + ν3 transitions between 4410 and 4629 cm−1 are reported for eighteen pairs with upper state J values between 2 and 11. The observed line mixing coefficients for self broadening vary from 0.0019 to 0.0390 cm−1 atm−1 at 296 K. The measured line mixing coefficients for air broadening vary from 0.0005 to 0.0205 cm−1 atm−1 at 296 K.  相似文献   

17.
We report on experimental collisional relaxation of the J = 24 ← 23 line of HC314N, located near 218.3 GHz, induced by nitrogen, hydrogen, and helium. The measurements were carried out at selected temperatures in the 235-350 K range using a video-type spectrometer. The foreign gas broadening parameters and their temperature dependences were determined assuming Voigt lineshape profiles and the usual T−n temperature law. The experimental broadening parameters are compared with results derived using the ATC collisional formalism.  相似文献   

18.
In this paper, we report measured Lorentz N2-broadening and N2-induced pressure-shift coefficients of CH3D in the ν2 fundamental band using a multispectrum fitting technique. These measurements were made by analyzing 11 laboratory absorption spectra recorded at 0.0056 cm−1 resolution using the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory on Kitt Peak, Arizona. The spectra were obtained using two absorption cells with path lengths of 10.2 and 25 cm. The total sample pressures ranged from 0.98 to 402.25 Torr with CH3D volume mixing ratios of 0.01 in nitrogen. We have been able to determine the N2 pressure-broadening coefficients of 368 ν2 transitions with quantum numbers as high as J″ = 20 and K = 16, where K″ = K′ ≡ K (for a parallel band). The measured N2-broadening coefficients range from 0.0248 to 0.0742 cm−1 atm−1 at 296 K. All the measured pressure-shifts are negative. The reported N2-induced pressure-shift coefficients vary from about −0.0003 to −0.0094 cm−1 atm−1. We have examined the dependence of the measured broadening and shift parameters on the J″, and K quantum numbers and also developed empirical expressions to describe the broadening coefficients in terms of m (m = −J″, J″, and J″ + 1 in the QP-, QQ-, and QR-branch, respectively) and K. On average, the empirical expressions reproduce the measured broadening coefficients to within 4.7%. The N2-broadening and pressure-shift coefficients were calculated on the basis of a semiclassical model of interacting linear molecules performed by considering in addition to the electrostatic contributions the atom-atom Lennard-Jones potential. The theoretical results of the broadening coefficients are in good overall agreement with the experimental data (8.7%). The N2-pressure shifts whose vibrational contribution is derived from parameters fitted in the QQ-branch of self-induced shifts of CH3D, are also in reasonable agreement with the scattered experimental data (20% in most cases).  相似文献   

19.
Summary Pressure broadening and shift parameters are measured for theJ=1−0 line of CH3C14N at 18.4 GHz, both for the three hyperfine components and for the single line which envelopes the hyperfine components, observed at higher pressures (p≥40 mTorr). In agreement with theoretical predictions, these parameters are the same for all the observed lines: Γ p = (50 ± 5) MHz/Torr,s=(7±2) MHz/Torr. These values are compared with previous measurements, showing a large variance expecially for the shift parameter. The measured broadening parameter is 40% lower than prediction of the Anderson theory.
Riassunto Sono stati misurati i parametri di allargamento e spostamento per pressione della rigaJ=1−0 del CH3C14N a 18.4 GHz. Tali misure sono state eseguite, sulle tre componenti iperfini e sul loro inviluppo osservato a pressionip≥40 mTorr. In accordo con le previsioni teoriche, questi parametri risultano gli stessi per tutte le righe osservate: Γ p = (50 ± 5) MHz/Torr,s=(7±2) MHz/Torr. Questi valori sono confrontati con quelli delle precedenti misure che mostrano una considerevole dispersione, specialmente per quanto riguarda il parametro di spostamento. L'allargamento per pressione è risultato piú basso di quello previsto dalla teoria di Anderson di circa il 40%.
  相似文献   

20.
This paper reports the luminescence properties of spark-processed Si (sp-Si) prepared with different atmospheres such as air, O2, and N2 in low vacuum range (50-760 Torr). Three main luminescence bands are observed from spark-processed Si (sp-Si). In addition to the well-known two luminescence bands in the blue/violet peaking at 410 nm and green peaking at 500 nm, a novel UV luminescence band is detected for the sp-Si prepared in N2. The temperature dependence of photoluminescence (PL) characteristics of the newly detected UV luminescence band is examined. Further studies of photoluminescence excitation (PLE) have been performed and origins of luminescence are discussed based on the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号