首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of swelling on the shear modulus was studied for hydrogels prepared by radical polymerization of methacrylate-terminated poly(ethylene oxide) (PEO) bis-macromonomers of different molecular weight. Gels made of long chains (M = 12000 or 6000) display classical softening upon swelling, whereas gels made of shorter chains (M = 4000 or 2000) remain rigid or even stiffen. The abnormal behaviour is explained by a specific character of network junctions presented by polymethacrylate chains in which each unit is linked with a PEO network chain. It is assumed that the interactions among densely grafted PEO chains result in their stretching on polymerization and non-affine deformation on swelling, which stiffen the gel. This is verified by the data on copolymer (macromonomers - 2-hydroxyethyl methacrylate) gels that have lesser densities of PEO chains attached to the junctions and show weaker stiffening on swelling. The osmotic pressure of gels was estimated from the swelling pressure and shear modulus. Similar to the mixing pressure of equivalent PEO solutions, it varies as the 9/4 power of polymer concentration. At the same time, it is lower than the mixing pressure. This indicates that the junctions make only quantitative changes in the osmotic properties of macromonomer chains.  相似文献   

2.
Two kinds of cross-linked polymer membranes were prepared by photo polymerization. One of them (PEO membrane) is a co-polymer of methoxy-terminated poly(ethylene glycol) methacrylate (MEMA) and poly(ethylene glycol) dimethacrylate (EDMA) in feed ratio of 70/30 in wt%. The other (PF/PEO membrane) is a co-polymer of 1H,1H,9H-hexadecafluorononyl methacrylate and EDMA in feed ratio of 70/30 in wt%. The block lengths of poly(ethylene oxide) (PEO) are 9 and 14 for MEMA and EDMA, respectively. Permeation properties of inorganic gases, hydrocarbons, perfluorocarbons and chlorofluorocarbons (CFCs) were investigated for these membranes compared with a silicone rubber (SR) membrane. The PF/PEO membrane is inferior to the SR membrane as for CFCs/N2 separation because the former has lower permeabilities. The PEO membrane has good performance for separation of hydrocarbons and CFCs from N2 or perfluorocarbons.  相似文献   

3.
A well‐defined amphiphilic copolymer of ‐poly(ethylene oxide) (PEO) linked with comb‐shaped [poly(styrene‐co‐2‐hydeoxyethyl methacrylate)‐graft‐poly(ε‐caprolactone)] (PEO‐b‐P(St‐co‐HEMA)‐g‐PCL) was successfully synthesized by combination of reversible addition‐fragmentation chain transfer polymerization (RAFT) with ring‐opening anionic polymerization and coordination–insertion ring‐opening polymerization (ROP). The α‐methoxy poly(ethylene oxide) (mPEO) with ω,3‐benzylsulfanylthiocarbonylsufanylpropionic acid (BSPA) end group (mPEO‐BSPA) was prepared by the reaction of mPEO with 3‐benzylsulfanylthiocarbonylsufanyl propionic acid chloride (BSPAC), and the reaction efficiency was close to 100%; then the mPEO‐BSPA was used as a macro‐RAFT agent for the copolymerization of styrene (St) and 2‐hydroxyethyl methacrylate (HEMA) using 2,2‐azobisisobutyronitrile as initiator. The molecular weight of copolymer PEO‐b‐P(St‐co‐HEMA) increased with the monomer conversion, but the molecular weight distribution was a little wide. The influence of molecular weight of macro‐RAFT agent on the polymerization procedure was discussed. The ROP of ε‐caprolactone was then completed by initiation of hydroxyl groups of the PEO‐b‐P(St‐co‐HEMA) precursors in the presence of stannous octoate (Sn(Oct)2). Thus, the amphiphilic copolymer of linear PEO linked with comb‐like P(St‐co‐HEMA)‐g‐PCL was obtained. The final and intermediate products were characterized in detail by NMR, GPC, and UV. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 467–476, 2006  相似文献   

4.
We have studied the structural changes on poly(2-hydroxyethyl methacrylate) (PHEMA)/polystyrene (PS) blends by means of phase growth of microheterophase pattern on a template surface composed of poly[2-hydroxyethyl methacrylate (HEMA)-g-styrene (S)] graft copolymer (lamellar shape). The PS macromonomer was synthesized by free radical polymerization of S monomer initiated by a functional initiator [2,2'-azobis(2-(2-imidazolin-2-yl)propane: VA-061] in the presence of a degradative chain transfer agent, followed by an end-capping reaction with p-chloromethylstyrene (CMS). Poly(HEMA-g-S) graft copolymers were prepared by free radical copolymerization of these vinylbenzyl-terminated PS macromonomers with HEMA comonomer.  相似文献   

5.
The well‐defined, thermosensitive and biodegradable graft copolymers, poly(N‐isopropylacrylamide)‐b‐[2‐hydroxyethyl methacrylate‐poly(ε‐caprolactone)]n (PNIPAAm‐b‐(HEMA‐PCL)n) (n = 3 or 9), were synthesized by combining reversible addition‐fragmentation chain transfer polymerization and macromonomer method. The copolymers were able to self‐assemble into micelles in water with low critical micellar concentration and demonstrated temperature sensitivity with a lower critical solution temperature at around 36 °C. Transmission electron microscopy shows that the micelles exhibit a nanosized spherical morphology within a size range of 30–100 nm. The PNIPAAm‐b‐(HEMA‐PCL)3 copolymer exhibited biodegradation and low cytotoxicity. The paclitaxel‐loaded PNIPAAm‐b‐(HEMA‐PCL)3 micelles displayed thermosensitive controlled release behavior, which indicates potential as drug carriers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5354–5364, 2007  相似文献   

6.
The solubility parameters of pure poly(2‐hydroxyethyl methacrylate) (PHEMA) and poly(2‐hydroxyethyl methacrylate/itaconic acid) [P(HEMA/IA)] hydrogels were determined by 20 solvents with various solubility parameters in swelling experiments. The solubility parameter of pure PHEMA was 26.93 ± 0.46 (MPa)1/2. The effect of mole percentages of itaconic acid (IA) in P(HEMA/IA) hydrogels on the solubility parameter was investigated. The measured values were compared to literature and solubility values theoretically determined by group contribution values of van Krevelen and Hoy. The incorporation of IA into the hydrogel system slightly increased the solubility parameter. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1995–2003, 2002  相似文献   

7.
New super‐tough poly(butylene terephthalate) (PBT)/poly(ethylene‐octene) copolymer (PEO) blends containing 2 wt% poly(ethylene‐co‐glycidyl methacrylate) (EGMA) as a compatibilizer were obtained by extrusion and injection molding. The blends comprised of an amorphous PBT‐rich phase with some miscibilized EGMA, a pure PEO amorphous phase, and a crystalline PBT phase that was not influenced by the presence of either PEO or EGMA. The blends showed a fine particle size up to 20 wt% PEO content. Super‐tough blends were obtained with PEO contents equal to or higher than 10%. The maximum toughness was very high (above 710 J/m) and was attained with 20% PEO without chemical modification of the commercial components used. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
The poly(HEMA‐co‐MMA‐g‐PMMA) graft copolymer was prepared with a poly(methyl methacrylate) (PMMA) macromonomer, 2‐hydroxyethyl methacrylate (HEMA), and methyl methacrylate (MMA), and its application as a dispersant for the nonaqueous phase dispersion polymerization of polystyrene (PST) was investigated. Monodisperse PST particles were obtained with two‐dimensionally tailored graft copolymers, with the number of grafted chains controlled and the polar component (HEMA) in the backbone chains balanced. As for the reactor, a stirred vessel with moderate agitation yielded uniform polymer particles, whereas sealed glass ampules with an overturning motion yielded broader size distributions. Increasing the polarity of the solvent in the continuous phase yielded smaller polymer particles with a gradual deterioration of monodispersity. Uniform polymer particles with a coefficient of variation of less than 6% were obtained up to 30 wt % solid contents. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1788–1798, 2003  相似文献   

9.
Sodium alginate-g-poly(acrylic acid-co-2-hydroxyethyl methacrylate)/montmorillonite superabsorbent composites (SACs) were prepared by graft copolymerization of acrylic acid (AA) and 2-hydroxyethyl methacrylate (HEMA) onto sodium alginate (Na-Alg) in the presence of montmorillonite (MMT) using N,N′-methylenebisacrylamide (MBA) as a crosslinker and potassium persulfate (KPS) as an initiator in aqueous solution. The composite structures were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Thermal Gravimetric Analysis (TGA) and Scanning Electron Microscope (SEM). The effect of % initiator, crosslinker amount and clay ratio on the swelling capacity was investigated. The results indicated that the highest swelling capacity of the composites in distilled water was 752 g/g by using 1.25% KPS and 0.06% MBA, 75% AA, 6.25% HEMA and 12.5% Na-Alg. Different samples were loaded with urea to evaluate their release potentials, and the release was studied by measuring the conductivity. The amount of urea release increased with increasing MMT amount.  相似文献   

10.
The ability to manipulate and control the surface properties of nylons is of crucial importance to their widespread applications. In this work, surface-initiated atom-transfer radical polymerization (ATRP) is employed to tailor the functionality of the nylon membrane and pore surfaces in a well-controlled manner. A simple two-step method, involving the activation of surface amide groups with formaldehyde and the reaction of the resulting N-methylol polyamide with 2-bromoisobutyryl bromide, was first developed for the covalent immobilization of ATRP initiators on the nylon membrane and its pore surfaces. Functional polymer brushes of 2-hydroxyethyl methacrylate (HEMA) and poly(ethylene glycol)monomethacrylate (PEGMA) were prepared via surface-initiated ATRP from the nylon membranes. A kinetics study revealed that the chain growth from the membranes was consistent with a "controlled" process. The dormant chain ends of the grafted HEMA polymer (P(HEMA)) and PEGMA polymer (P(PEGMA)) on the nylon membranes could be reactivated for the consecutive surface-initiated ATRP to produce the corresponding nylon membranes functionalized by P(HEMA)-b-P(PEGMA) and P(PEGMA)-b-P(HEMA) diblock copolymer brushes. In addition, membranes with grafted P(HEMA) and P(PEGMA) brushes exhibited good resistance to protein adsorption and fouling under continuous-flow conditions.  相似文献   

11.
采用大分子单体技术合成了以聚甲基丙烯酸甲酯为主链,聚氧乙烯链为侧链,末端为白蛋白诱导吸附基团的十八烷基功能聚合物聚甲基丙烯酸甲酯接枝十八烷基聚氧乙烯.采用变角X光电子能谱和表面接触角研究了该功能聚合物在空气和水界面的性质.结果表明,在聚合物-空气界面,十八烷基聚氧乙烯(SPEO)的表面含量随表面层厚度的降低而升高,并在表面发生高度富集.在聚合物-水界面,聚合物表面重组行为较弱,形成了高SPEO含量的疏水表面,该SPEO尾形结构表面预期可发挥聚氧乙烯和十八烷基的协同作用,形成白蛋白原位复合的生物医用功能材料.  相似文献   

12.
Graft copolymers of styrene and poly(propylene oxide) were prepared by reaction between styrene and a poly(propylene oxide) methacrylate macromonomer. The graft copolymers were characterized by i.r., GPC and 1H-NMR and mechanical properties were examined. The effect of zinc chloride on the copolymerization was evaluated. The results showed a decrease in the incorporation of macromonomer in the graft copolymer when zinc chloride was added to the system. This effect has been attributed to interaction among chains of poly(propylene oxide) and the zinc chloride.  相似文献   

13.
Polymer blend membranes have been obtained consisting of a hydrophilic and a hydrophobic polymers distributed in co‐continuous phases. In order to obtain stable membranes in aqueous environments, the hydrophilic phase is formed by a poly(hydrohyethyl acrylate), PHEA, network while the hydrophobic phase is formed by poly(vinylidene fluoride‐co‐trifluoroethylene) P(VDF‐TrFE). To obtain the composites, in a first stage, P(VDF‐TrFE) is blended with poly(ethylene oxyde) (PEO), the latter used as sacrificial porogen. P(VDF‐TrFE)/PEO blend membranes were prepared by solvent casting at 70°C followed by cooling to room temperature. Then PEO is removed from the membrane by immersion in water obtaining a P(VDF‐TrFE) porous membrane. After removing of the PEO polymer, a P(VDF‐TrFE) membrane results in which pores are collapsed. Nevertheless the pores reopen when a mixture of hydroxethyl acrylate (HEA) monomer, ethyleneglycol dimethacrylate (as crosslinker) and ethanol (as diluent) is absorbed in the membrane and subsequent polymerization yields hybrid hydrophilic/hydrophobic membranes with controlled porosity. The membranes are thus suitable for lithium‐ion battery separator membranes and/or biostable supports for cell culture in biomedical applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 672–679  相似文献   

14.
Poly(2-hydroxyethyl methacrylate) (poly(HEMA)) membranes were prepared by UV-initiated photopolymerization of HEMA in the presence of an initiator (a-a′-azobisisobutyronitrile, AIBN). An affinity dye, i.e. Cibacron Blue F3GA (CB) was incorporated covalently and then complexed with Fe(III) ions. The polyHEMA-CB and polyHEMA-CB-Fe(III) derivatized membranes were used in the adsorption of catalase (CAT). The enzyme-loading capability of the Fe(III)-containing membrane (23.6 μg/cm2) was greater than that of the poly(HEMA)-CB derivatized membrane (17.1 μg/cm2). The adsorption phenomena appeared to follow a typical Langmuir isotherm. The Km values for both immobilized catalases (poly(HEMA)-CB-CAT (22.4 mM) and poly(HEMA)-CB-Fe(III)-CAT (19.3 mM)) were higher than that of free enzyme (16.5 mM). Optimum operational temperature was 5°C higher than that of the free enzyme and was significantly broader. A similar observation was made for the optimum pH. Operational, thermal and storage stabilities were found to increase with immobilization, especially in the presence of Fe(III). It was observed that enzyme could be repeatedly adsorbed and desorbed without significant loss in adsorption capacity or enzyme activity.  相似文献   

15.
An important target of many controlled release systems is to properly modify the drug release behaviour in response to some external stimuli like temperature or pH changes. The copolymer gels made up by poly(N,N-dimethylaminoethyl methacrylate (DMAEMA)-co-acrylamide (AAm)), being thermosensitive, are suitable systems for the thermocontrol of the solute release. Modifying the ratio DMAEMA/AAm, one may select the copolymer systems showing desired swelling properties. In order to better design such systems and in order to understand better the solute transport through the copolymer membrane, a mathematical model has been developed. The model employs suitable flux equations for the water uptake or release and for the solute (hydrocortisone) diffusion. With the condition of knowing the copolymer swelling kinetics, the model is able to describe in a reasonably good manner the solute transport across a DMAEMA-AAm membrane undergoing step temperature changes.  相似文献   

16.
Alkali Blue 6B-attached poly(2-hydroxyethyl methacrylate) (poly(HEMA)) microporous films were investigated as chelate forming sorbents for heavy metal removal. Poly(HEMA) microporous films were prepared by UV-initiated photo-polymerization of HEMA in the presence of an initiator (azobisisobutyronitrile (AIBN)). Alkali Blue 6B was attached covalently. These films with a swelling ratio of 58%, and carrying 14.8 mmol Alkali Blue 6B m(-2) which were then used in the removal of Cd(II), Zn(II) and Pb(II) from aqueous media. Adsorption rates were very high, equilibrium was achieved in about 30 min. The maximum adsorption of heavy metal ions onto the Alkali Blue 6B-attached films were 41.4 mmol m(-2) for Cd(II), 52.4 mmol m(-2) for Zn(II), and 64.5 mmol m(-2) for Pb(II). When the heavy metal ions competed during the adsorption from a mixture the adsorption values for Cd(II), Zn(II) and Pb(II) were quite close. Heavy metal ions were desorbed by using 0.1 M HNO(3). A significant amount of the adsorbed heavy metal ions (up to 95%) could be desorbed in 30 min. Repeated adsorption/desorption cycles showed the feasibility of these novel dye-attached microporous films for heavy metal removal.  相似文献   

17.
This work reports the fabrication of proton exchange membranes (PEM) with stronger resistance to methanol penetration than Nafion®117. A three-component acrylic polymer blend (TCPB) consisting of a copolymer of 4-vinylphenol-methyl methacrylate, poly(butyl methacrylate) (PBMA) and a copolymer of methyl methacrylate-ethyl acrylate is used as the methanol barrier. In order to implant a proton source phase within the membrane as homogeneously as possible, the hydrophilic monomers, 2-acrylamido-2-methyl propanesulfonic acid (AMPS), 2-hydroxyethyl methacrylate (HEMA) and poly(ethylene glycol) dimethylacrylate (PEGDMA), are polymerized only after they have been embedded in the TCPB matrix. The embedded polymerization has resulted in an asymmetric membrane structure, in which the hydrophilic network is sandwiched by two layers of matrixes with high percentages of TCPB. As expected, this asymmetric membrane structure exhibits lower methanol uptake than Nafion®117; and a proton conductivity in the range of 10−3–10−4 S/cm, which is dependent on the concentration of the sulfonic acid content. It is suggested that the two external layers in this asymmetric membrane provide primarily methanol-blocking and supporting proton-conducting properties; while the middle layer supplies protons and conserves water. This unique sandwiched PEM structure from embedded polymerization is confirmed by microstructure characterizations and by physical property measurements.  相似文献   

18.
Summary: Spherical micelles have been formed by mixing, in DMF, a poly(styrene)‐block‐poly(2‐vinylpyridine)‐block‐poly(ethylene oxide) (PS‐block‐P2VP‐block‐PEO) triblock copolymer with either poly(acrylic acid) (PAA) or a tapered triblock copolymer consisting of a PAA central block and PEO macromonomer‐based outer blocks. Noncovalent interactions between PAA and P2VP result in the micellar core while the outer corona contains both PS and PEO chains. Segregation of the coronal chains is observed when the tapered copolymer is used.

Inclusion of comb‐like chains with short PEO teeth in the corona triggers the nanophase segregation of PS and PEO as illustrated here (PS = polystyrene; PEO = poly(ethylene oxide)).  相似文献   


19.
Among three cyclopentadienyl titanium complexes studied, CpTiCl2(OEt), containing a 5% excess CpTiCl3, has proven to be a very efficient catalyst for the ring‐opening polymerization (ROP) of L ‐lactide (LLA) in toluene at 130 °C. Kinetic studies revealed that the polymerization yield (up to 100%) and the molecular weight increase linearly with time, leading to well‐defined PLLA with narrow molecular weight distributions (Mw/Mn ≤ 1.1). Based on the above results, PS‐b‐PLLA, PI‐b‐PLLA, PEO‐b‐PLLA block copolymers, and a PS‐b‐PI‐b‐PLLA triblock terpolymer were synthesized. The synthetic strategy involved: (a) the preparation of OH‐end‐functionalized homopolymers or diblock copolymers by anionic polymerization, (b) the reaction of the OH‐functionalized polymers with CpTiCl3 to give the corresponding Ti‐macrocatalyst, and (c) the ROP of LLA to afford the final block copolymers. PMMA‐g‐PLLA [PMMA: poly(methyl methacrylate)] was also synthesized by: (a) the reaction of CpTiCl3 with 2‐hydroxy ethyl methacrylate, HEMA, to give the Ti‐HEMA‐catalyst, (b) the ROP of LLA to afford a PLLA methacrylic‐macromonomer, and (c) the copolymerization (conventional and ATRP) of the macromonomer with MMA to afford the final graft copolymer. Intermediate and final products were characterized by NMR spectroscopy and size exclusion chromatography, equipped with refractive index and two‐angle laser light scattering detectors. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1092–1103, 2010  相似文献   

20.
In this paper, series of novel pH-responsive silver (Ag) nanoparticle/poly(2-hydroxyethyl methacrylate (HEMA)-poly(ethylene glycol) methyl ether methacrylate (PEGMA)-methacrylic acid (MAA)) composite hydrogel were successfully prepared by in situ reducing Ag+ ions anchored in the hydrogel by the deprotonized carboxyl acid groups. X-ray diffraction (XRD), UV-vis spectrophotometry, transmission electron microscopy (TEM) and electric conductivity tests were used to characterize the composite system. It was found that the size and morphology of the reduced Ag nanoparticles in the composite hydrogels could be changed by loading the Ag+ ions at various swelling ratios of hydrogel. Moreover, compared to the pure poly(HEMA-PEGMA-MAA) hydrogel, not only did the Ag nanoparticle/poly(HEMA-PEGMA-MAA) composite hydrogels exhibit much higher swelling ratio and faster deswelling rate, but also higher pH switchable electrical properties upon controlling the interparticle distance under pH stimulus. The pH responsive nanocomposite hydrogel reported here might be a potentially smart material in the range of applications including electronics, biosensors and drug-delivery devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号