首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blend films consisting of chlorophyllin dispersed in carboxymethyl chitin (CM-chitin) and carboxymethyl chitosan (CM-chitosan) were prepared by solution casting and characterized for their physical and electrical properties. Homogeneous films were obtained having chlorophyllin content up to 50 wt% in the CM-chitin matrix and 30 wt% in the CM-chitosan matrix. Agglomeration of chlorophyllin particles in the chlorophyllin/CM-chitosan blend was observed, when chlorophyllin content reached 50 wt%. The electrical conductivity of CM-chitosan was higher than that of CM-chitin by approximately 2 orders of magnitude due to the higher content of amino polar groups. The electrical conductivity increased with increasing chlorophyllin content. The addition of metal ion salts improved the electrical conductivity of the blend films.  相似文献   

2.
Blend films of silk fibroin and carboxymethyl chitin were prepared by solution casting using water as a cosolvent. The blend films were subjected to post-treatment with an aqueous methanol solution to induce beta-sheet formation of silk fibroin. The miscibility of the blend films both before and after methanol treatments was investigated in terms of chemical interactions, morphologies, thermal properties, and crystal structures by using FTIR spectroscopy, SEM, DSC, and XRD. The results indicate that the blend between silk fibroin and CM-chitin was semi-miscible because only the amorphous parts of the polymers were compatible with each other. The enzymatic degradation showed that the incorporation of CM-chitin enhanced biodegradability and swelling ability of silk fibroin.  相似文献   

3.
A series of novel hybrid gel films were prepared from carboxymethylated chitosan (CM-chitosan) and activated carbon (AC) by irradiation of compression-molded CM-chitosan/AC mixture in physical gel state with electron beam (EB) at room temperature. The formation, properties and structure of CM-chitosan/AC hybrid gel films were discussed in terms of gel fraction, swelling, mechanical property, SEM image and XPS spectra. Compared with pure crosslinked CM-chitosan gel, the gel fraction and mechanical property of the hybrid sample were obviously improved after adding AC into CM-chitosan film. The morphology analyses indicated that the hybrid gel films exhibited a rough and folded surface and a relatively interior uniform structure was sustained between CM-chitosan and AC. XPS revealed that the content of protonated amino groups of CM-chitosan macromolecule was promoted by AC. In addition, the adsorptive property of the gel films against humic acid was investigated by batch adsorption method. It was found that the adsorption efficiency of CM-chitosan is significantly improved by adding AC. These preliminary evaluations suggest that the CM-chitosan/AC gel films have great potential for applications in industrial field and biomedical field.  相似文献   

4.
A series of antibacterial hydrogels were fabricated from an aqueous solution of AgNO3, gelatin and carboxymethyl chitosan (CM-chitosan) by radiation-induced reduction and crosslinking at ambient temperature. The nanosilver particles were in situ synthesized accompanying with the formation of gelatin/CM-chitosan hydrogel. Transmission Electron Microscope and UV–vis analysis have verified the formation and homogeneous distribution of nanosilver particles in the hydrogel matrix. The nanosilver/gelatin/CM-chitosan hydrogels possessed interconnected porous structure, had a compressive modulus of 44 to 56 kPa, and could absorb 62 to 108 times of deionized water to its dry weight. Furthermore, the hydrogels were found to have sound antibacterial effect on Escherichia coli (E. coli), and their antibacterial ability could be significantly enhanced by the increasing of AgNO3 content. The comprehensive results of this study suggest that nanosilver/gelatin/CM-chitosan hydrogels have potential as an antibacterial wound dressing.  相似文献   

5.
The effects of electron beam irradiation in the nitrogen environment, on chain scission, crosslinking, crystallinity, mechanical performance, and barrier properties of LDPE/PA6/LDPE multi‐layer films were studied. The evaluation of radiation‐induced crosslinking effect by the gel content measurement and Charlesby–Pinner plot suggested more of crosslinking over chain scission, in all the layers, which was more pronounced in polyethylene phase. The FTIR analysis results showed good agreement with those observed by the gel content measurements. It is believed that the crosslinking reaction had occurred through the C? N bonds in polyamide‐6, and vinyl group in polyethylene layers. The evaluation of radiation effect on the crystallinity and crosslinking of films by FTIR technique showed that by increasing the applied doses, the crystallinity in all the layers was decreased and the crosslinking was increased. The differential scanning calorimetry of irradiated samples revealed that due to the crosslinking reaction, the crystallinity was decreased by the applied dose. The tensile strength of the films was increased and the percent elongation at break was decreased, by increasing the applied doses. This study was also indicated that the radiation‐induced crosslinking effect on the tensile properties was dominantly observed up to 50 kGy. The surface free energy analysis of the films using the contact angle measurement and geometric mean equation indicated that the surface polarity was decreased by increasing the absorbed doses. It was found that due to the decline in the surface polarity and the simultaneously formation of crosslinked network in these films, both water vapor transmission rate and oxygen permeability were significantly decreased. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Chitosan has been widely used in a variety of biomedical applications including peripheral nerve repair because of its excellent mechanical properties and biocompatibility. However, chitosan itself has a very slow degradation rate, and its molecules degrade in an uncontrollable manner. We hypothesized that the cross-linking of carboxymethyl chitosan (CM-chitosan), which is soluble in water, would result in a higher degradation rate in lysozyme solutions, while retaining its excellent mechanical properties and nerve cell affinity. In this study, we characterized the constructed matrix formed using a combination of carboxymethylation of chitosan chains and thereafter 1-ethyl-3(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) cross-linking. Specifically, after EDC cross-linking, the hydrophilicity and elastic modulus of the CM-chitosan films decreased. These changes are beneficial in the application of chitosan derivatives for nerve repair. The porous conduits degraded to 30% in weight during eight weeks of incubation in lysozyme solution (pH 7.4, 37 °C). In addition, the cross-linked CM-chitosan films enhanced the spread of Neuro-2a cells and provided a good proliferation substratum for Neuro-2a cells, as compared to chitosan films. Therefore, cross-linking with EDC is a promising way to modify chitosan derivatives for peripheral nerve regeneration.  相似文献   

7.
Freestanding multilayer films prepared by layer‐by‐layer technique have attracted interest as promising materials for wound dressings. The goal is to fabricate freestanding films using chitosan (CHI) and alginate (ALG) including subsequent crosslinking to improve the mechanical properties of films while maintaining their biocompatibility. Three crosslinking strategies are investigated, namely use of calcium ions for crosslinking ALG, 1‐ethyl‐3‐(‐3‐dimethylaminopropyl) carbodiimide combined with N‐hydroxysuccinimide for crosslinking ALG with CHI, and Genipin for crosslinking chitosan inside the films. Different characteristics, such as surface morphology, wettability, swelling, roughness, and mechanical properties are investigated showing that films became thinner, exhibited rougher surfaces, had lower water uptake, and increased mechanical strength after crosslinking. Changes of wettability are moderate and dependent on the crosslinking method. In vitro cytotoxicity and cell attachment studies with human dermal fibroblasts show that freestanding CHI‐ALG films represent a poorly adhesive substratum for fibroblasts, while studies using incubation of plastic‐adherent fibroblast beneath floating films show no signs of cytotoxicity in a time frame of 7 days. Results from cell experiments combined with film characteristics after crosslinking, indicate that crosslinked freestanding films made of ALG and CHI may be interesting candidates for wound dressings.  相似文献   

8.
Dendritic polyaniline (PANI) nanoparticles were synthesized via oxidative polymerization of aniline, using ammoniumperoxodisulfate as an oxidant, and CM-chitin as a template. The reaction was performed under acidic conditions and the template was removed after the polymerization was completed. Molecular characterization (including UV-vis, FTIR, TGA, and XRD) suggests that the structure of the synthesized dendritic PANI nanoparticles is identical to that of the emeraldine form of PANI, synthesized by the conventional route (without the addition of the CM-chitin template). SEM images reveal that the dendritic PANI nanoparticles have an average diameter in the nanometer range, and are globular in shape, with radially oriented PANI dendrites; in contrast, irregularly-shaped aggregates of PANI are obtained using the conventional synthesis. It was further found that the size of the dendritic PANI nanoparticles is dependent on the CM-chitin content. The higher the CM-chitin concentration, the smaller is the size of the dendritic PANI nanoparticles obtained. An interpretation of these observations and a possible formation mechanism are proposed based on self-assembly between the CM-chitin chains and the aniline monomer.  相似文献   

9.
Sodium carboxymethyl cellulose (CMC) is a kind of degraded polymer under γ-irradiation. However, in this work, it has been found that CMC crosslinks partially to form hydrogel by radiation technique at more than 20% CMC aqueous solution. The gel fraction increases with the dose. The crosslinking reaction of CMC is promoted in the presence of N2 or N2O due to the increase of free radicals on CMC backbone, but gel fraction of CMC hydrogel is not high (<40%). Some important values related to this kind of new CMC hydrogel synthesized under different conditions, such as radiation yield of crosslinking G(x), gelation dose Rg, number average molecular weight of network Mc were calculated according to the Charlesby–Pinner equation. The results indicated that although crosslinked CMC hydrogel could be prepared by radiation method, the rate of radiation degradation of CMC was faster than that of radiation crosslinking due to the character of CMC itself. Swelling dynamics of CMC hydrogel and its swelling behavior at different conditions, such as acidic, basic, inorganic salt as well as temperature were also investigated. Strong acidity, strong basicity, small amount of inorganic salts and lower temperature can reduce swelling ratio.  相似文献   

10.
In this paper, nanofibrillated cellulose/carboxymethyl cellulose (CMC) composite films were prepared using tape casting. The obtained transparent films showed shear induced partial alignment of fibrils along the casting direction, resulting in birefringence in cross polarized light. The carboxyl groups of CMC could be further utilized to create ionic crosslinking by treatment with glycidyl trimethyl ammonium chloride (GTMA). The GTMA treated composite films had improved mechanical properties both in wet and dry state. The chemical composition and morphologies of composites were analyzed with X-ray photoelectron spectroscopy, elemental analysis, scanning electron microscopy and wide-angle X-ray scattering.  相似文献   

11.
羧甲基纤维素-壳聚糖水凝胶球的制备及性能   总被引:1,自引:0,他引:1  
补朝阳 《化学研究》2011,22(6):65-67
采用物理交联法制备了羧甲基纤维素(CMC)-壳聚糖(CS)共混水凝胶球;研究了共混球的耐酸碱性、溶胀性及对亚甲基蓝的吸附性能.结果表明,水凝胶球在弱酸和弱碱中具有一定的稳定性;随着羧甲基纤维素与壳聚糖质量比的增大,水凝胶的吸水溶胀率增加.在CMC与CS质量比为1∶4时制备的水凝胶呈规则球状.  相似文献   

12.
Polysilsesquioxanes were prepared through the acid‐catalyzed hydrolytic polycondensation of triethoxy(methyl)silane, triisopropoxy(methyl)silane, or triisobutoxy(methyl)silane and subjected to dip coating to form coating films. The film formation depended on the polarity and crystallinity of the substrate, and a correlation was found between the substrate and polysilsesquioxane solubility parameters. When the coating film was heated, thermal condensation occurred at about 500 °C between hydroxy groups or between hydroxy and alkoxy groups. The methyl group attached to silicon decomposed, and siloxane bonding formed at about 800 °C. The adhesion and hardness of the coating films were evaluated with the Japanese Industrial Standard K5400 protocol, and they increased with increases in the heating time and heat‐treatment temperature. The refractive index of the coating films decreased when the heat‐treatment temperature was increased to 500 °C because of the combustion of organic groups. In contrast, the surface electric resistance increased with the heat‐treatment temperature up to 500 °C. The dielectric constant was 2.6–2.8 and decreased with an increases in the molecular weight and the degree of crosslinking of the polysilsesquioxanes. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3676–3684, 2004  相似文献   

13.
Interactions of the aggregate state of poly(ethylene oxide), PEO, and γ-irradiation conditions (total dose, atmosphere) on its thermal and crystalline properties were investigated by DSC and WAXD taking into account sample molecular mass and form. In PEO irradiated in the solid state and in the presence of oxygen, chain scission dominated over concurrent crosslinking up to 200 kGy, particularly in PEO powders, due to a large surface being in contact with air. In solid samples the degree of crystallinity and crystallite size increased with the dose up to 50 kGy, probably not just due to partial crystallization upon degradation of amorphous phase, but to recrystallization of broken tie molecules. The least changes in crystallinity and phase transformation temperatures occurred in solid films. A substantial decrease in crystallinity and transformation temperatures without the initial crystallinity increase was achieved in samples that were amorphous on irradiation, at temperatures above the PEO melting temperature and in aqueous solutions. Radiation crosslinking of the PEO aqueous solution in an inert atmosphere is the most suitable way to obtain a lower degree of crystallinity and phase transformation temperatures while preserving mechanical properties.  相似文献   

14.
O-carboxymethyl chitosan (CM-chitosan), holds high potential as a valuable biomaterial for nerve guidance conduits (NGCs). However, the lack of explicit bioactivity on neurocytes and poor duration that does not match nerve repair limit the restorative effects. Herein, CM-chitosan-based NGC is designed to induce the reconstruction of damaged peripheral nerves without addition of other activation factors. CM-chitosan possesses excellent performance in vitro for nerve tissue engineering, such as increasing the organization of filamentous actin and the expression of phospho-Akt, and facilitating the cell cycle and migration of Schwann cells. Moreover, CM-chitosan exhibits increased longevity upon cross-linking (C-CM-chitosan) with 1, 4-Butanediol diglycidyl ether, and C-CM-chitosan fibers possess appropriate biocompatibility. In order to imitate the structure of peripheral nerves, multichannel bioactive NGCs are prepared from lumen fillers of oriented C-CM-chitosan fibers and outer warp-knitted chitosan pipeline. Implantation of the C-CM-chitosan NGCs to rats with 10-mm defects of peripheral nerves effectively improve nerve function reconstruction by increasing the sciatic functional index, decreasing the latent periods of heat tingling, enhancing the gastrocnemius muscle, and promoting nerve axon recovery, showing regenerative efficacy similar to that of autograft. The results lay a theoretical foundation for improving the potential high-value applications of CM-chitosan-based bioactive materials in nerve tissue engineering.  相似文献   

15.
In this work the efficiency and physicochemical details of a thin film produced by help of a microwave assisted sol gel technique is compared to different commercial powders (Degussa P25 and Hombikat UV100) deposited on glass substrates. Furthermore, a supercritical produced TiO2 powder (SC 134) was included in the comparison.The prepared TiO2 films were characterized using XRD, XPS, AFM, DSC and DLS. The photocatalytic activity was determined using stearic acid as a model compound. Investigation of the prepared films showed that the Degussa P25 film and the sol–gel film were the most photocatalytic active films. The activity of the films was found to be related to the crystallinity of the TiO2 film and the amount of surface area and surface hydroxyl groups. Based on the XPS investigation of the films before and after UV irradiation it was suggested that the photocatalytic destruction of organic matter on TiO2 films proceeds partly through formation of hydroxyl radicals which are formed from surface hydroxyl groups created by interactions between adsorbed water and vacancies on the TiO2 surface. Furthermore a correlation between the amount of OH groups on the surface of the different TiO2 films and the photocatalytic activity was found.  相似文献   

16.
The equilibrium sorption of a cationic dye, C.I.Basic Red 18, by a partially carboxymethylated cellulose membrane at pH 4.2 was investigated. The sorption isotherm was interpreted by considering a cooperative mode of binding of the dye by the polymer. The intrinsic binding constantK, the number of consecutive polymer residues occupied by a single dye moleculen, and the cooperativity parameter were determined. In the case of the polymer with high content of carboxylate groups an additional mode of dye binding was presumed.  相似文献   

17.
pH and ionic sensitive interpenetrating polymer network (IPN) complex films based on chitosan (CS) and carboxymethyl chitosan (CM-CS) were prepared by using glutaraldehyde as crosslinking agent. Its structure was characterized by FT-IR, which indicated that the IPN was formed. The films were studied by swelling, weight loss with time, and release of coenzyme A (CoA). It was found that the IPN films were sensitive to pH and ionic strength of the medium. The cumulative release rate of CoA decreased with CoA loading content, ionic strength or crosslinking agent increasing. The composition of the IPN films and pH of release medium also had significant effect on the release of CoA. The differences in the rates and amounts of released CoA may be attributed to the swelling behavior, the degradation of films, and interaction between drug molecule and polymer matrix. These results suggested CS/CM-CS IPN films could be used as drug delivery carrier.  相似文献   

18.
A change in the contact properties of the surface of tetrafluoroethylene-vinylidene fluoride copolymer films by a dc discharge treatment has been studied, depending on the treatment time and the discharge current. It has been shown that the treatment of the films at the anode and cathode leads to a significant decrease in the contact angle and an increase in the total surface energy and its polar term. The change in the contact properties of the plasma-modified films during storage and heating has been studied as well. The experiments have shown that the formation of polyconjugated structures and crosslinking of macromolecules take place in the film surface layer during long-term treatment at the anode (>60 s, 50 mA), processes that result in an acetone-insoluble layer. The composition and surface structure of the films have been examined by Fourier-transform IR spectroscopy and X-ray photoelectron spectroscopy. The formation of new oxygen-containing groups and double bonds on the polymer surface and crosslinking of macromolecules in the case of anode treatment have been revealed. It has been found experimentally that the discharge treatment increases the peel strength in the Scotch® 810/copolymer film system.  相似文献   

19.
Novel carboxymethyl chitosan‐polylactide (CMCS‐g‐PLA) hydrogels were prepared by using 1‐(3‐dimethylaminopropyl)‐3‐ethylcarbodiimide hydrochloride/N‐hydroxysuccinimide (EDC/NHS) as crosslinking agent and catalyst at room temperature. Solid‐state 13C‐NMR, SEM, and FT‐IR measurements showed that PLA blocks are successfully grafted onto the CMCS main chains. DSC measurements confirmed the effective crosslinking of carboxymethyl chitosan. With increasing the amount of EDC/NHS, the crosslink destiny of CMCS‐g‐PLA copolymers is improved. The swelling ratio of CMCS‐g‐PLA hydrogels is pH dependent, showing a minimum in the pH range of 3 to 5. Rheological studies confirmed the formation of hydrogels. The higher the crosslinking density, the higher the storage modulus of hydrogels. CMCS‐g‐PLA hydrogels only slightly degrade in PBS for 10 days. In the presence of lysozyme, however, hydrogels with low crosslink density are totally degraded in 10 days. Drug release studies show that after 96 h, 95% of thymopentin is released under in vitro conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
This study focuses on the radiation effect of γ-ray on carboxymethylated chitosan (CM-chitosan) in solid state. The changes in molecular weight of CM-chitosan with absorbed dose were monitored by viscosity method. Experimental results indicated that random chain scissions took place under irradiation. Radiation chemical yield (Gd) of CM-chitosan in solid state with N2-saturated was 0.49, which showed CM-chitosan has high radiation stability. Biomaterials composed of CM-chitosan can be thought to sterilize with low absorbed dose. FTIR and UV spectra showed that main chain structures of CM-chitosan were retained, carbonyl/carboxyl groups were formed and partial amino groups were eliminated in high absorbed dose. XRD patterns identified that the degradation of CM-chitosan occurred mostly in amorphous region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号