首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemisorption of CO on W(100) at ~ 100K has been studied using a combination of flash desorption and electron stimulated desorption (ESD) techniques. This is an extension of a similar study made for CO adsorption on W(100) at temperatures in the range 200–300K. As in the 200–300 K CO layer, both α1-CO and α2-CO are formed in addition to more strongly bound CO species upon adsorption at ~ 100K; the α-CO states yield CO+ and O+ respectively upon ESD. At low CO coverages, the α1 and α2-CO states are postulated to convert to β-CO or other strongly bound CO species upon heating. At higher CO coverages, α1-CO converts to α2-CO upon thermal desorption or electron stimulated desorption. There is evidence for the presence of other weakly-bound states in the low temperature CO layer having low surface concentration at saturation. The ESD behavior of the CO layer coadsorbed with hydrogen on W(100) is reported, and it is found that H(ads) suppresses either the concentration or the ionic cross section for α1 and α2-CO states.  相似文献   

2.
High resolution electron-energy-loss spectroscopy has been used to study the surface vibrations of CO on a W(100) surface at 300 K. For small exposures (β-CO) two losses at ~68 meV and ~78 meV are observed. This vibrational spectrum of β-CO is a clear indication of dissociative adsorption with the carbon and oxygen atoms in fourfold coordination sites each. With further exposure to CO two additional losses at 45 meV and 258 meV are observed, which represent the vibration of undissociated α-CO in upright position on top of a W atom. Furtheron results of coadsorption of H2/CO and O2/CO on W(100) are reported.  相似文献   

3.
Thermal desorption and work function measurements indicate that a largely molecular layer, with some dissociation, is formed at 80–100 K, with an increase in work function of 0.55 eV. The coverage in this layer is 11.5 × 1014 molecules/cm2, or CO/W = 1.15. On heating, equal amounts of a β precursor, possibly dissociated, and a molecular α species are formed at ≈300 K, with abundances of 5 × 1014 molecules/cm2 each. The α desorption is complete at 360 K. The β precursor evolves on heating without desorption in the range 400–700 K as indicated by work function decreases, to β-CO, which is almost certainly dissociated. This change occurs at lower temperatures for low coverages. Thermal desorption shows 3 peaks, which have been traditionally labelled β1, β2, and β3 at 930, 1070, and 1375 K. Of these only β3 corresponds to a well defined state. Readsorption after heating to 950 or 1150 K results in a doubly peaked spectrum at 1070 and 1375 K. The β1 and β2 peaks obey complex desorption kinetics, probably corresponding to desorption and rearrangement. The coverage of β3 is 2.5 × 1014 molecules/cm2, suggesting that the c(2 × 2) LEED pattern corresponds to occupany of every other unit cell by a C or an O atom. For coverages ? 1.5 × 1014 molecules/cm2 β3 desorption obeys second order kinetics with an activation energy of 83 ± 3 kcal/mole. For β3 the work function decreases from the clean W value by 0.1 eV, suggesting adsorption of C and O in the center of the W unit mesh, below the surface layer of W atoms. Readsorption on β and β precursor layers leads to formation of electropositive α-CO, with a multiply peaked thermal desorption spectrum, indicating the existence of different binding sites. Adsorption-heatingreadsorption, -heating-readsorption sequences indicate that additional changes in the α desorption spectrum occur, suggesting reconstruction in the β layer.  相似文献   

4.
CO/W desorption spectra are characterized by an α state and multiple β states; using electron stimulated desorption (ESD) the α state was shown to comprise two sub-states, α1 and α2. In this paper the consecutive interactions of O2 and CO on W are investigated using ESD, flash desorption and field emission microscopy (FEM).Desorption spectra show that the α-CO state is displaced by O2, in two stages. The ESD probe provides an identification of the first stage with the removal of the α1-CO state, and energy analysis of ESD ions reveals a large energy shift (~ ? 1.5 eV) during O2 coadsorption which can be attributed to an incresae in the α1-CO WC bond length of ~ 0.15 Å. During this O2-induced displacement, the two β peaks converge into a single peak at the β1 position; this is ascribed to adatom interactions in the mixed O and C adlayer. Isotope exchange experiments with 28CO and 36O2 reveal (i) no exchange in the α-CO states, and (ii) complete exchange in the β-CO states, which is consistent with dissociative adsorption in the latter. The amount of coadsorbed O2 is estimated from these results, and from FEM data: a full monolayer of O adatoms can be coadsorbed on CO-saturated W, but CO pre-adsorption inhibits the formation of W oxides. The β1-O2 (ESD active) state also forms on the CO-covered surface: this state is identical in population, ESD cross section and ion energy distribution to β1-O2 on clean W, and retains its identity in the mixed layer (it does not undergo isotopic exchange). CO2 desorption spectra from the mixed layer were also characterised, complete isotopic scrambling being observed.Pre-exposure of tungsten to O2 inhibits CO adsorption: a monolayer of O2 is sufficient to prevent CO adsorption, and at low O2 coverages, every O2 molecule preadsorbed prevents one CO molecule from adsorbing. Isotopic exchange is again complete in the β states, and a lateral interaction model for desorption kinetics, based on dissociative adsorption in the β-CO state, quantitatively describes the CO desorption spectra.  相似文献   

5.
The chemisorption of both CO and O2 on a clean tungsten ribbon has been studied using an ultrahigh vacuum X-ray photoelectron spectrometer. For CO, the energy and intensity of photoemission from O(1s) and C(1s) core levels have been studied for various adsorption temperatures.At adsorption temperatures of ~100 K., the “virgin”-CO state was the dominant adsorbed species. Conversion of this state to more strongly-bound β-CO is observed upon heating the adsorbed layer to ~320K. Thermal desorption of CO at 300?T?640 K causes sequential loss of α1-CO and α2-CO as judged by the disappearance of O(1s) and C(1s) photoelectron peaks characteristic of these states.Oxygen adsorption at 300K gives a single main O(ls) peak at all coverages, although at high oxygen coverages there exist small auxiliary peaks at ~2eV lower kinetic energy. The photoelectron C(1s) and O(1s) binding energies observed for these adsorbed species are all lower than for gaseous molecules containing C and O atoms. For CO adsorption states there is a systematic decrease in photoelectron binding energy as the strength of adsorption increases. These observations are in general accord with expectations based on electronic relaxation effects in condensed materials.  相似文献   

6.
The adsorption and coadsorption of CO and H2 have been studied by means of thermal desorption (TD) and electron stimulated desorption (ESD) at temperatures ranging from 250 to 400 K. Three CO TD states, labelled as β2, β1, and β0 were detected after adsorption at 250 K. The population of β2 and β1 states which are the only ones observed upon adsorption at temperatures higher than 300 K was found to depend on adsorption temperature. The correlation between the binding states in the TD spectra and the ESD O+ and CO+ ions observed was discussed. Hydrogen is dissociatively adsorbed on Pd(111) and no ESD H+ signal was recorded following H2 adsorption on a clean Pd surface. The presence of CO was found to cause an appearance of a H+ ESD signal, a decrease of hydrogen surface population and an arisement of a broad H2 TD peak at about 450 K. An apparent influence of hydrogen on CO adsorption was detected at high hydrogen precoverages alone, leading to a decrease in the CO sticking coefficient and the relative population of CO β2 state. The coadsorption results were interpreted assuming mutual interaction between CO and H at low and medium CO coverages, the “cooperative” species being responsible for the H+ ESD signal. Besides, the presence of CO was proved to favour hydrogen penetration into the bulk even at high CO coverage when H atoms were completely displaced from the surface.  相似文献   

7.
The behaviour of adsorbed CO on Ru(001) flat and Ru(l,1,10) stepped surfaces in the CO pressure range between 10?6 and 101 Pa has been investigated by TDS, AES, LEED and UPS. The disproportionation of CO proceeds rapidly on the stepped surface and its apparent activation energy was obtained to be 20 kJ mol?1 at nearly zero coverage. The carbon species produced by CO disproportionation show non-uniform reactivity with 18O2 and provide four CO desorption peaks in TPR spectra, which are assigned to α-C18O,ß-C18O and those derived from carbidic and graphitic carbons. At smaller carbon coverage, only α-CO and β-CO were observed, but with increasing coverage the amount of ß-CO reaches a maximum and carbidic carbon is newly formed. Further increase of carbon deposition gives graphitic carbon. The conversion from carbidic to graphitic carbon and the dissolution into the bulk took place upon heating to 1000 K. It is remarkable that very active carbon species are converted to molecular CO through the reaction with O2 even at low temperature such as 200 K. It was also confirmed that active carbon species are formed on Ru surface during COH2 reaction.  相似文献   

8.
鲍世宁  朱立  徐亚伯 《物理学报》1991,40(11):1888-1892
在不同K覆盖度的W(100)面上吸附CO的Hel紫外光电子能谱研究表明:α和β态的CO由于K的影响,吸附状态发生改变,与CO分子态(α态)有关的5σ/1π分子轨道能级随K覆盖度的增加,结合能位置从8.6eV移到9.3eV,反映K出现后,衬底对α-CO分子反施的增强。在与CO分解态(β态)有关的谱峰位置上(结合能为5.5eV)出现两个离散的谱峰,一个在6.0eV左右,另一个在5.2eV左右。其中结合能在5.2eV左右的谱峰强度随K的覆盖度增加而增大,它的能量位置与O在K覆盖的W(100)面上吸附时的能级位置 关键词:  相似文献   

9.
The adsorption energies of carbon monoxide chemisorbed at various sites on a tungsten (100) surface have been calculated by extended Hückel molecular orbital theory (EHMO). The concept of a “surface molecule” in which CO is bonded to an array of tungsten atoms Wn has been employed. Dissociative adsorption in which C occupies a four-fold, five-coordination site and O occupies either a four- or two-fold site has been found to be the most stable form for CO on a W surface. Stable one-fold and two-fold sites of molecularly adsorbed CO have also been found in which the CO group is normal to the surface plane and the C atom is nearest the surface. Adsorption energies and molecular orbitals for the stable molecularly and dissociatively adsobred CO sites are compared with the experimental data on various types of adsorbed CO, i.e., virgin-, α-, and β-CO. Models are suggested for each of these adsorption types. The strongest bonding interactions occur between the CO 5σ orbital and the totally symmetric 5d and 6s orbitals of the Wn cluster. Possible mechanisms for conversion of molecularly adsorbed CO to dissociatively adsorbed CO are proposed and the corresponding activation energies are estimated.  相似文献   

10.
The interaction of methanol with clean and oxygen-covered Pt(111) surfaces has been examined with high resolution electron loss spectroscopy (EELS) and thermal desorption spectroscopy (TDS). On the clean Pt(111) surface, methanol dehydrogenated above 140 K to form adsorbed carbon monoxide and hydrogen. On a Pt(111)-p(2 × 2)O surface, methanol formed a methoxy species (CH3O) and adsorbed water. The methoxy species was unstable above 170 K and decomposed to form adsorbed CO and hydrogen. Above room temperature, hydrogen and carbon monoxide desorbed near 360 and 470 K, respectively. The instability of methanol and methoxy groups on the Pt surface is in agreement with the dehydrogenation reaction observed on W, Ru, Pd and Ni surfaces at low pressures. This is in contrast with the higher stability of methoxy groups on silver and copper surfaces, where decomposition to formaldehyde and hydrogen occurs. The hypothesis is proposed that metals with low heats of adsorption of CO and H2 (Ag, Cu) may selectively form formaldehyde via the methoxy intermediate, whereas other metals with high CO and H2 chemisorption heats rapidly dehydrogenate methoxy species below room temperature.  相似文献   

11.
A study of the adsorption/desorption behavior of CO, H2O, CO2 and H2 on Ni(110)(4 × 5)-C and Ni(110)-graphite was made in order to assess the importance of desorption as a rate-limiting step for the decomposition of formic acid and to identify available reaction channels for the decomposition. The carbide surface adsorbed CO and H2O in amounts comparable to the clean surface, whereas this surface, unlike clean Ni(110), did not appreciably adsorb H2. The binding energy of CO on the carbide was coverage sensitive, decreasing from 21 to 12 kcalmol as the CO coverage approached 1.1 × 1015 molecules cm?2 at 200K. The initial sticking probability and maximum coverage of CO on the carbide surface were close to that observed for clean Ni(110). The amount of H2, CO, CO2 and H2O adsorbed on the graphitized surface was insignificant relative to the clean surface. The kinetics of adsorption/desorption of the states observed are discussed.  相似文献   

12.
The adsorption of thiophene (C4H4S) on the clean and sulfided Mo(100) crystal surface has been studied. A fraction of the adsorbed thiophene desorbs molecularly while the remainder decomposes upon heating, evolving H2 and leaving carbon and sulfur deposits on the surface. The reversibly adsorbed thiophene exhibits three distinct desorption peaks at 360, 230–290 and 163–174 K, corresponding to binding energies of 22, 13–16 and 7–9 kcal/mol respectively. Sulfur on the Mo(100) surface preferentially blocks the highest energy binding state and causes an increase in the amount of thiophene bound in the low binding energy, multilayer state. The thiophene decomposition reactions yield H2 desorption peaks in the temperature range 300–700 K. We estimate that 50–66% of the thiophene adsorbed to the clean Mo(100) decomposes. The decomposition reaction is blocked by the presence of c(2 × 2) islands of sulfur and is blocked completely at θs = 0.5, at which point thiophene adsorption is entirely reversible.  相似文献   

13.
In a study of the interaction of methanol and formaldehyde with an atomically clean W(100) surface at 300 K, ultra-violet photoelectron spectroscopy (U has been used to identify chemisorbed species and to investigate the nature of the chemical ical bonding in adsorbed layers of mixed composition. Tempe programmed thermal desorption has been used to assist in the interpretation of the data. Methanol and formaldehyde, when exposed to a clean W(100) surf decompose to give initially a mixture of adsorbed CO and H. After further exposure, increasing CO coverage causes loss of H. This is followed by the ad of molecular species producing photoelectron spectra and desorption products which are dependent on the coverage of pre-adsorbed CO. The nature of the molecular species, in relation to gas phase methanol and formaldehyde, is discussed.  相似文献   

14.
The surface ionization of alkaline-earth elements on tungsten has been studied in dependence on the temperature T and the surrounding oxygen partial pressure po2; the values of the ionization efficiency β together with those of the change of the work function ΔΦ of the surface have been applied to get information about chemical reactions of the incident alkaline-earth atoms with adsorbed oxygen and about the adsorption of alkaline-earth elements on tungsten.Whereas in the high temperature range the tungsten surface is clean, towards lower temperatures (i.e. below ≈ 2500 K at po2 = 1 × 10?6 Torr or below ≈ 2000 K at po2 = = 1 × 10?9 Torr), an adsorption of oxygen increases the work function Φ and, consequently, the ionization efficiency β of incident metal atoms. A characteristic feature of the surface ionization of the alkaline-earth elements, however, is a rapid re-decrease of β with further decreasing temperature, which occurs at T ≈ 1400 K for Mg/W, T ≈ 1600 K for Ca/W, T ≈ 1800 K for Sr/W, and at T ≈ 2000 K for Ba/W. It is shown that this behaviour of β is caused by two different reasons: Whereas in the case of Mg/W a substantial Mg adsorption leading to a reduction of the work function is responsible for the decrease of β solely, the β values of Ca and Sr are additionally influenced by chemical reactions of the incident metal atoms with adsorbed oxygen resulting in an alkaline-earth oxide desorption. In the system BaW the decrease of the ionization efficiency β can be referred to BaO formation exclusively.Assuming a thermodynamic equilibrium between the different adparticles and using experimental values of the dissociation energy of the alkaline-earth oxides (in the gas phase), the results are in good agreement with theoretical calculations.  相似文献   

15.
H2S, H2 and S adsorbed on Ru(110) have been studied by angle-integrated ultraviolet photoemission (UPS) as part of a study of the effect of adsorbed sulfur, a common catalytic poison, on this Ru surface. For low exposures of H2S at 80 K, the work function rises to a value 0.16 eV above that of clean Ru(110) while the associated UPS spectra (hν = 21.2 eV) exhibit features similar to those of H(ads) and S(ads) and different from those of molecular H2S. We conclude that H2S dissociates completely at low coverages on Ru(110) at 80 K. At intermediate exposures the work function drops and the UPS spectra show new features which are attributed to the presence of an adsorbed SH species. This appears to be the first direct observation of this surface complex. At higher exposures the work function saturates at a value 0.36 eV below the clean value; the UPS spectra change markedly and indicate the adsorption of molecular H2S. Heating adsorbed H2S leaves a stable layer of S(ads) on Ru(110). The surface with adsorbed sulfur strongly modifies the adsorption at 80 K of a number of molecules relative to the clean Ru(110) surface.  相似文献   

16.
A clean tungsten filament adsorbs methanol rapidly at room temperature, the initial sticking probability being 0.8. At saturation, the composition of the adsorbed layer is roughly CO:H = 1:1 and it is suggested that the hydrogen may be in the form of a surface complex. The continuous decomposition of methanol by the hot filament under steady-state conditions, or when the filament had been previously oxygenated, followed a different course from that previously reported for the newly-cleaned filament. Rather than a rapid rise in the rate of decomposition (to CO + H2) for 600 < Tfil < 1300 K to a high plateau above 1300 K, decompositon to formaldehyde, carbon monoxide and methane was observed. The rates at which these products appeared passed through low maxima between 900 and 1100 K. The change in the relative importance of formaldehyde and carbon monoxide production with filament temperature within this range is attributed to a temperature-dependent life-time of formaldehyde molecules on the oxygenated surface. At the highest temperature (> 1500 K) the reactivity increased rapidly to join that of the clean surface, probably due to the desorption of surface oxygen.  相似文献   

17.
Thermal desorption and photoemission spectroscopy (PES) have been used to investigate the chemisorption of CO on an annealed Pt0.98Cu0.02(110) surface. The clean surface shows 9.1 ± 2.6% Cu within the top 4 Å, and is (1 × 3) reconstructed. Thermal desorption of CO has revealed the existence of various adsorption states with these respective heats of adsorption: (α) 35.2 to 37.8 kcal/mol and (β) 24.5 to 26.3 kcal/mol on Pt sites, (γ) 16.0 to 17.2 kcal/mol on PtCu “mixed” sited, and (δ) 12.9 to 13.9 kcal/mol on Cu sites. PES observation of Cu 3d-derived states (using hv = 150 eV) and the Cu 2p32 core levels (using Mg Kα radiation) shows that the electronic structure of the Cu constituent is changed only when CO adsorbs on the Pt-Cu “mixed” sites or the Cu sites. Furthermore, the CO states associated with Pt sites reflect the structural difference between the (1 × 3) alloy surface and the (1 × 2) pure Pt(110) surface: α-CO on the alloy surface desorbs at a temperature 17 to 21 K. higher than the maximum desorption temperature of CO from pure Pt(110), and the ratio of β-CO to α-CO desorption from the alloy surface is larger than the ratio of low temperature to high temperature peaks in the desorption of CO from pure Pt(110).  相似文献   

18.
A. Spitzer  H. Lüth 《Surface science》1982,120(2):376-388
The water adsorption on clean and oxygen precovered Cu(110) surfaces is studied by means of UPS, LEED, work function measurements and ELS. At 90 K on the clean surface molecular water adsorption is indicated by UPS. The H2O molecules are bonded at the oxygen end and the H-O-H angle is increased as compared with the free molecule. In the temperature range between 90 and 300 K distorted H2O molecules and adsorbed hydroxyl species (OH) are detected, which are desorbed at room temperature. On an oxygen covered surface hydroxyl groups are formed by dissociation of adsorbed water molecules at a lower temperature than on the clean surface. Multilayers of condensed water are found below 140 K in both cases.  相似文献   

19.
The electron impact behavior of CO adsorbed on was investigated. The desorption products observed were neutral CO, CO+, and O+. After massive electron impact residual carbon, C/W = 0.15, but not oxygen was also found, suggesting that energetic neutral O, not detected in a mass analyzer must also have been formed. Formation of β-CO, i.e., dissociated CO with C and O on the surface was not seen. The total disappearance cross section varies only slightly with coverage, ranging from 9 × 10 −18 cm2 at low to 5 × 10−18 cm2 at saturation (CO/W = 0.75). The cross section for CO+ formation varies from 4 × 10−22 cm2 at satura to 2 × 10−21 cm2 at low coverage. That for O+ formation is 1.4 × 10−22 cm2 at saturation and 2 × 10−21 cm2 Threshold energies are similar to those found previously [J.C. Lin and R. Gomer, Surf. Sci. 218 (1989) 406] for and CO/Cu1/W(110) which suggests similar mechanisms for product formation, with the exception of β-CO on clean W(110). It is argued that the absence or presence of β-CO in ESD hinges on its formation or absence in thermal desorption, since electron impact is likely to present the surface with vibrationally and rotationally activated CO in all cases; β-CO formation only occurs on surfaces which can dissociate such CO. It was also found that ESD of CO led to a work function increase of the remaining Pd1/W(110) surface of 500 meV, which could be annealed out only at 900 K. This is attributed to surface roughness, caused by recoil momentum of energetic desorbing entities.  相似文献   

20.
The interaction of O2, CO2, CO, C2H4 AND C2H4O with Ag(110) has been studied by low energy electron diffraction (LEED), temperature programmed desorption (TPD) and electron energy loss spectroscopy (EELS). For adsorbed oxygen the EELS and TPD signals are measured as a function of coverage (θ). Up to θ = 0.25 the EELS signal is proportional to coverage; above 0.25 evidence is found for dipole-dipole interaction as the EELS signal is no longer proportional to coverage. The TPD signal is not directly proportional to the oxygen coverage, which is explained by diffusion of part of the adsorbed oxygen into the bulk. Oxygen has been adsorbed both at pressures of less than 10-4 Pa in an ultrahigh vacuum chamber and at pressures up to 103 Pa in a preparation chamber. After desorption at 103 Pa a new type of weakly bound subsurface oxygen is identified, which can be transferred to the surface by heating the crystal to 470 K. CO2 is not adsorbed as such on clean silver at 300 K. However, it is adsorbed in the form of a carbonate ion if the surface is first exposed to oxygen. If the crystal is heated this complex decomposes into Oad and CO2 with an activation energy of 27 kcal/mol(1 kcal = 4.187 kJ). Up to an oxygen coverage of 0.25 one CO2 molecule is adsorbed per two oxygen atoms on the surface. At higher oxygen coverages the amount of CO2 adsorbed becomes smaller. CO readily reacts with Oad at room temperature to form CO2. This reaction has been used to measure the number of O atoms present on the surface at 300 K relative to the amount of CO2 that is adsorbed at 300 K by the formation of a carbonate ion. Weakly bound subsurface oxygen does not react with CO at 300 K. Adsorption of C2H4O at 110 K is promoted by the presence of atomic oxygen. The activation energy for desorption of C2H4O from clean silver is ~ 9 kcal/mol, whereas on the oxygen-precovered surface two states are found with activation energies of 8.5 and 12.5 kcal/mol. The results are discussed in terms of the mechanism of ethylene epoxidation over unpromoted and unmoderated silver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号