首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Although there have been some reports about the cytotoxic effects of photodynamic therapy (PDT) on multidrug-resistant bacteria, there have been few reports in which favorable results of PDT on a local infection site are described. This study aimed to verify the hypothesis that the low efficacy of PDT on a local infection site is due to the cytotoxic effect of PDT on leukocytes. PDT using Photofrin® exerted significant cytotoxicity for cultured methicillin-resistant Staphylococcus aureus (MRSA). Nevertheless, this therapeutic modality was not effective for a murine MRSA arthritis model. Approximately 30% of intra-articular leukocytes, mainly neutrophils, died immediately after PDT, and a further decrease in the number of intra-articular leukocytes and atrophy of the synovial tissue were seen 24 h after PDT. Isolated peripheral neutrophils showed significant affinity for Photofrin® and showed significant morphological damage, resulting in cell death, when they were subject to PDT using Photofrin®. These results indicate that intra-articular neutrophils have an influence on the effects of PDT for MRSA arthritis.  相似文献   

2.
Photodynamic therapy (PDT) for localized microbial infections exerts its therapeutic effect both by direct bacterial killing and also by the bactericidal effects of host neutrophils stimulated by PDT. Therefore, PDT-induced damage to neutrophils must be minimized, while direct photoinactivation of bacteria is maintained to maximize the therapeutic efficacy of antimicrobial PDT in vivo. However, there has been no study in which the cytocidal effect of PDT on neutrophils was investigated. In this study, the cytocidal effects of PDT on neutrophils were evaluated using different antimicrobial photosensitizers to find suitable candidate photosensitizers for antimicrobial PDT. PDT on murine peripheral-blood neutrophils was performed in vitro using each photosensitizer at a concentration that exerted a maximum bactericidal effect on methicillin-resistant Staphylococcus aureus, and morphological alteration and viability of neutrophils were studied. Most neutrophils were viable (>80%) after PDT using toluidine blue-O (TB) or methylene blue (MB), while neutrophils showed morphological change and their viabilities were decreased (<70%) after PDT using other photosensitizers (erythrosine B, rose bengal, crystal violet, Photofrin, new methylene blue and Laserphyrin). These results suggest that PDT using TB or MB can preserve host neutrophils while exerting a significant therapeutic effect on in vivo localized microbial infection.  相似文献   

3.
Photodynamic therapy (PDT) is a field with many applications including chemotherapy. Graphene quantum dots (GQDs) exhibit a variety of unique properties and can be used in PDT to generate singlet oxygen that destroys pathogenic bacteria and cancer cells. The PDT agent, methylene blue (MB), like GQDs, has been successfully exploited to destroy bacteria and cancer cells by increasing reactive oxygen species generation. Recently, combinations of GQDs and MB have been shown to destroy pathogenic bacteria via increased singlet oxygen generation. Here, we performed a spectrophotometric assay to detect and measure the uptake of GQDs, MB and several GQD‐MB combinations in MCF‐7 breast cancer cells. Then, we used a cell counting method to evaluate the cytotoxicity of GQDs, MB and a 1:1 GQD:MB preparation. Singlet oxygen generation in cells was then detected and measured using singlet oxygen sensor green. The dye, H2DCFDA, was used to measure reactive oxygen species production. We found that GQD and MB uptake into MCF‐7 cells occurred, but that MB, followed by 1:1 GQD:MB, caused superior cytotoxicity and singlet oxygen and reactive oxygen species generation. Our results suggest that methylene blue's effect against MCF‐7 cells is not potentiated by GQDs, either in light or dark conditions.  相似文献   

4.
Recently, increased attention has been focused on endoscopic disinfection after outbreaks of drug‐resistant infections associated with gastrointestinal endoscopy. The aims of this study were to investigate the bactericidal efficacy of methylene blue (MB)‐based photodynamic therapy (PDT) on Pseudomonas aeruginosa (P. aeruginosa), which is the major cause of drug‐resistant postendoscopy outbreak, and to assess the synergistic effects of hydrogen peroxide addition to MB‐based PDT on biofilms. In planktonic state of P. aeruginosa, the maximum decrease was 3 log10 and 5.5 log10 at 20 and 30 J cm?2, respectively, following MB‐based PDT. However, the maximum reduction of colony forming unit (CFU) was decreased by 2.5 log10 and 3 log10 irradiation on biofilms. The biofilm formation was significantly inhibited upon irradiation with MB‐based PDT. When the biofilm state of P. aeruginosa was treated with MB‐based PDT with hydrogen peroxide, the CFU was significantly decreased by 6 log10 after 20 J cm?2, by 7 log10 after 30 J cm?2 irradiation, suggesting significantly higher efficacy than MB‐based PDT alone. The implementation of the combination of hydrogen peroxide with MB‐based PDT through working channels might be appropriate for preventing early colonization and biofilm formation in the endoscope and postendoscopy outbreak.  相似文献   

5.
Enterococcus faecalis poses a challenge to the efficacy of traditional root canal disinfection methods. This study was aimed to establish a synergistic root canal disinfection strategy combining ultrasonic irrigation with photodynamic therapy (PDT) together and to test its antibacterial efficacy against E. faecalis. Twenty‐seven bovine root canals infected with E. faecalis were randomly divided into three groups and treated with different disinfection methods as follows: ultrasonic irrigation with 2.5% NaOCl, methylene blue (MB)‐mediated PDT, or combined ultrasonic irrigation and PDT as described above. Quantification of E. faecalis was performed on the root canals before and immediately after the disinfection treatment. Residual bacteria were determined by counting colony‐forming units. Samples were randomly selected from the three groups, and the morphology of residual bacteria inside the dentinal tubules was studied by scanning electron microscopy. The number of surviving E. faecalis in the group treated with the combination method was significantly lower (P < 0.05) than those in the ultrasonic irrigation‐treated or PDT‐treated groups. Similar results were found in the morphological studies of the three groups. The results of our study highlighted the importance of combination of ultrasonic irrigation and PDT to produce significant antibacterial efficacy against E. faecalis during root canal disinfection.  相似文献   

6.
Conventional antibiotics are ineffective against non‐replicating bacteria (for example, bacteria within biofilms). We report a series of halogenated phenazines (HP), inspired by marine antibiotic 1 , that targets persistent bacteria. HP 14 demonstrated the most potent biofilm eradication activities to date against MRSA, MRSE, and VRE biofilms (MBEC=0.2–12.5 μM), as well as the effective killing of MRSA persister cells in non‐biofilm cultures. Frontline MRSA treatments, vancomycin and daptomycin, were unable to eradicate MRSA biofilms or non‐biofilm persisters alongside 14 . HP 13 displayed potent antibacterial activity against slow‐growing M. tuberculosis (MIC=3.13 μM), the leading cause of death by bacterial infection around the world. HP analogues effectively target persistent bacteria through a mechanism that is non‐toxic to mammalian cells and could have a significant impact on treatments for chronic bacterial infections.  相似文献   

7.
Conventional antibiotics are ineffective against non‐replicating bacteria (for example, bacteria within biofilms). We report a series of halogenated phenazines (HP), inspired by marine antibiotic 1 , that targets persistent bacteria. HP 14 demonstrated the most potent biofilm eradication activities to date against MRSA, MRSE, and VRE biofilms (MBEC=0.2–12.5 μM), as well as the effective killing of MRSA persister cells in non‐biofilm cultures. Frontline MRSA treatments, vancomycin and daptomycin, were unable to eradicate MRSA biofilms or non‐biofilm persisters alongside 14 . HP 13 displayed potent antibacterial activity against slow‐growing M. tuberculosis (MIC=3.13 μM), the leading cause of death by bacterial infection around the world. HP analogues effectively target persistent bacteria through a mechanism that is non‐toxic to mammalian cells and could have a significant impact on treatments for chronic bacterial infections.  相似文献   

8.
Antimicrobial photodynamic treatment (PDT) is a promising method that can be used to control localized mycoses or kill fungi in the environment. A major objective of the current study was to compare the conidial photosensitization of two fungal species (Metarhizium anisopliae and Aspergillus nidulans) with methylene blue (MB) and toluidine blue (TBO) under different incubation and light conditions. Parameters examined were media, photosensitizer (PS) concentration and light source. PDT with MB and TBO resulted in an incomplete inactivation of the conidia of both fungal species. Conidial inactivation reached up to 99.7%, but none of the treatments was sufficient to achieve a 100% fungicidal effect using either MB or TBO. PDT delayed the germination of the surviving conidia. Washing the conidia to remove unbound PS before light exposure drastically reduced the photosensitization of A. nidulans. The reduction was much smaller in M. anisopliae conidia, indicating that the conidia of the two species interact differently with MB and TBO. Conidia of green and yellow M. anisopliae mutants were less affected by PDT than mutants with white and violet conidia. In contrast to what occurred in PBS, photosensitization of M. anisopliae and A. nidulans conidia was not observed when PDT was performed in potato dextrose media.  相似文献   

9.
Conventional photodynamic therapy with aminolevulinate (ALA‐PDT) selectively induces apoptosis in diseased cells and is highly effective for treating actinic keratoses. However, similar results are achieved only in a subset of patients with cutaneous T‐cell lymphoma (CTCL). Our previous work shows that the apoptotic resistance of CTCL correlates with low expression of death receptors like Fas cell surface death receptor (FAS), and that methotrexate upregulates FAS by inhibiting the methylation of its promoter, acting as an epigenetic derepressor that restores the susceptibility of FAS‐low CTCL to caspase‐8‐mediated apoptosis. Here, we demonstrate that methotrexate increases the response of CTCL to ALA‐PDT, a concept we refer to as epigenetically enhanced PDT (ePDT). Multiple CTCL cell lines were subjected to conventional PDT versus ePDT. Apoptotic biomarkers were analyzed in situ with multispectral imaging analysis of immunostained cells, a method that is quantitative and 5× more sensitive than standard immunohistology for antigen detection. Compared to conventional PDT or methotrexate alone, ePDT led to significantly greater cell death in all CTCL cell lines tested by inducing greater activation of caspase‐8‐mediated extrinsic apoptosis. Upregulation of FAS and/or tumor necrosis factor‐related apoptosis‐inducing ligand pathway components was observed in different CTCL cell lines. These findings provide a rationale for clinical trials of ePDT for CTCL.  相似文献   

10.
Tapinarof is a stilbene drug that is used to treat psoriasis and atopic dermatitis, and is thought to function through regulation of the AhR and Nrf2 signaling pathways, which have also been linked to inflammatory bowel diseases. It is produced by the gammaproteobacterial Photorhabdus genus, which thus represents a model to probe tapinarof structural and functional transformations. We show that Photorhabdus transforms tapinarof into novel drug metabolism products that kill inflammatory bacteria, and that a cupin enzyme contributes to the conversion of tapinarof and related dietary stilbenes into novel dimers. One dimer has activity against methicillin‐resistant Staphylococcus aureus (MRSA) and vancomycin‐resistant Enterococcus faecalis (VRE), and another undergoes spontaneous cyclizations to a cyclopropane‐bridge‐containing hexacyclic framework that exhibits activity against Mycobacterium. These dimers lack efficacy in a colitis mouse model, whereas the monomer reduces disease symptoms.  相似文献   

11.
The concept of metronomic photodynamic therapy (mPDT) is presented, in which both the photosensitizer and light are delivered continuously at low rates for extended periods of time to increase selective tumor cell kill through apoptosis. The focus of the present preclinical study is on mPDT treatment of malignant brain tumors, in which selectivity tumor cell killing versus damage to normal brain is critical. Previous studies have shown that low‐dose PDT using 5‐aminolevulinic acid (ALA)‐induced protoporphyrin IX(PpIX) can induce apoptosis in tumor cells without causing necrosis in either tumor or normal brain tissue or apoptosis in the latter. On the basis of the levels of apoptosis achieved and model calculations of brain tumor growth rates, metronomic delivery or multiple PDT treatments, such as hyperfractionation, are likely required to produce enough tumor cell kill to be an effective therapy. In vitro studies confirm that ALA‐mPDT induces a higher incidence of apoptotic (terminal deoxynucleotidyl transferase‐mediated 2′‐deoxyuridine 5′‐triphosphate, sodium salt nick‐end labeling positive) cells as compared with an acute, high‐dose regimen (ALA‐αPDT). In vivo, mPDT poses two substantial technical challenges: extended delivery of ALA and implantation of devices for extended light delivery while allowing unencumbered movement. In rat models, ALA administration via the drinking water has been accomplished at very high doses (up to 10 times therapeutic dose) for up to 10 days, and ex vivo spectro‐fluorimetry of tumor (9L gliosarcoma) and normal brain demonstrates a 3–4 fold increase in the tumor‐to‐brain ratio of PpIX concentration, without evidence of toxicity. After mPDT treatment, histological staining reveals extensive apoptosis within the tumor periphery and surrounding microinvading colonies that is not evident in normal brain or tumor before treatment. Prototype light sources and delivery devices were found to be practical, either using a laser diode or light‐emitting diode (LED) coupled to an implanted optical fiber in the rat model or a directly implanted LED using a rabbit model. The combined delivery of both drug and light during an extended period, without compromising survival of the animals, is demonstrated. Preliminary evidence of selective apoptosis of tumor under these conditions is presented.  相似文献   

12.
Traditional photodynamic therapy (PDT) is dependent on externally applied light and oxygen, and the depth of penetration of these factors can be insufficient for the treatment of deep infections. The short half-life and short diffusion distance of reactive oxygen species (ROS) also limit the antibacterial efficiency of PDT. Herein, we designed a targeting singlet oxygen delivery system, CARG-Py, for irradiation-free and oxygen-free PDT. This system was converted to the “singlet oxygen battery” CARG-1O2 and released singlet oxygen without external irradiation or oxygen. CARG-1O2 is composed of pyridones coupled to a targeting peptide that improves the utilization of singlet oxygen in deep multidrug-resistant bacterial infections. CARG-1O2 was shown to damage DNA, protein, and membranes by increasing the level of reactive oxygen inside bacteria; the attacking of multiple biomolecular sites caused the death of methicillin-resistant Staphylococcus aureus (MRSA). An in vivo study in a MRSA-infected mouse model of pneumonia demonstrated the potential of CARG-1O2 for the efficient treatment of deep infections. This work provides a new strategy to improve traditional PDT for irradiation- and oxygen-free treatment of deep infections while improving convenience of PDT.  相似文献   

13.
Inflammatory cells, most especially neutrophils, can be a necessary component of the antitumor activity occurring after administration of photodynamic therapy. Generation of neutrophil responses has been suggested to be particularly important in instances when the delivered photodynamic therapy (PDT) dose is insufficient. In these cases, the release of neutrophil granules and engagement of antitumor immunity may play an important role in eliminating residual disease. Herein, we utilize in vivo imaging of luminol chemiluminescence to noninvasively monitor neutrophil activation after PDT administration. Studies were performed in the AB12 murine model of mesothelioma, treated with Photofrin‐PDT. Luminol‐generated chemiluminescence increased transiently 1 h after PDT, followed by a subsequent decrease at 4 h after PDT. The production of luminol signal was not associated with the influx of Ly6G+ cells, but was related to oxidative burst, as an indicator of neutrophil function. Most importantly, greater levels of luminol chemiluminescence 1 h after PDT were prognostic of a complete response at 90 days after PDT. Taken together, this research supports an important role for early activity by Ly6G+ cells in the generation of long‐term PDT responses in mesothelioma, and it points to luminol chemiluminescence as a potentially useful approach for preclinical monitoring of neutrophil activation by PDT.  相似文献   

14.
Traditional photosensitizers (PSs) show reduced singlet oxygen (1O2) production and quenched fluorescence upon aggregation in aqueous media, which greatly affect their efficiency in photodynamic therapy (PDT). Meanwhile, non‐targeting PSs generally yield low efficiency in antibacterial performance due to their short lifetimes and small effective working radii. Herein, a water‐dispersible membrane anchor (TBD‐anchor) PS with aggregation‐induced emission is designed and synthesized to generate 1O2 on the bacterial membrane. TBD‐anchor showed efficient antibacterial performance towards both Gram‐negative (Escherichia coli) and Gram‐positive bacteria (Staphylococcus aureus). Over 99.8 % killing efficiency was obtained for methicillin‐resistant S. aureus (MRSA) when they were exposed to 0.8 μm of TBD‐anchor at a low white light dose (25 mW cm?2) for 10 minutes. TBD‐anchor thus shows great promise as an effective antimicrobial agent to combat the menace of multidrug‐resistant bacteria.  相似文献   

15.
Upconverting nanoparticles (UCNPs) with fascinating properties hold great potential as nanotransducers for solving the problems that traditional photodynamic therapy (PDT) has been facing. In this report, by using well‐selected bifunctional gadolinium (Gd)‐ion‐doped UCNPs and water‐soluble methylene blue (MB) combined with the water‐in‐oil reverse microemulsion technique, we have succeeded in developing a new kind of UCNP/MB‐based PDT drug, NaYF4:Er/Yb/Gd@SiO2(MB), with a particle diameter less than 50 nm. Great efforts have been made to investigate the drug‐formation mechanism and provide detailed physical and photochemical characterizations and the potential structure optimization of the as‐designed PDT drug. We envision that such a PDT drug will become a potential theranostic nanomedicine for future near‐infrared laser‐triggered photodynamic therapy and simultaneous magnetic/optical bimodal imaging.  相似文献   

16.
In photodynamic therapy (PDT), the level of reactive oxygen species (ROS) produced in the cell directly determines the therapeutic effect. Improvement in ROS concentration can be realized by reducing the glutathione (GSH) level or increasing the amount of photosensitizer. However, excessive amounts photosensitizer may cause side effects. Therefore, the development of photosensitizers that reduce GSH levels through synergistically improving ROS concentration in order to strengthen the efficacy of PDT for tumor is important. We report a nano‐metal–organic framework (CuII‐metalated nano‐MOF {CuL‐[AlOH]2}n (MOF‐2, H6L=mesotetrakis(4‐carboxylphenyl)porphyrin)) based on CuII as the active center for PDT. This MOF‐2 is readily taken up by breast cancer cells, and high levels of ROS are generated under light irradiation. Meanwhile, intracellular GSH is considerably decreased owing to absorption on MOF‐2; this synergistically increases ROS concentration and accelerates apoptosis, thereby enhancing the effect of PDT. Notably, based on the direct adsorption of GSH, MOF‐2 showed a comparable effect with the commercial antitumor drug camptothecin in a mouse breast cancer model. This work provides strong evidence for MOF‐2 as a promising new PDT candidate and anticancer drug.  相似文献   

17.
Studies of the phase‐equilibrium behavior of vinyl chloride (VCM)/n‐butane mixtures and the kinetics of VCM heterogeneous polymerization, using n‐butane as a reaction medium, were carried out using a 1‐L glass autoclave. The vapor composition was measured by gas chromatography, showing that the vapor pressure of the VCM/n‐butane mixture was located above the line connecting the points for pure VCM and n‐butane. The concentration of VCM in the vapor phase was greater than that in the corresponding liquid phase. It was confirmed that the presence of poly(vinyl chloride) (PVC) resin had no significant influences on the phase equilibrium of VCM/n‐butane mixtures. Thus, the phase‐equilibrium equations were applied to determine the conversion of VCM during heterogeneous polymerization. The conversions calculated from the variations of vapor pressure or composition agreed with those determined by the weighing method. The conversion–time and polymerization rate–time curves obtained for VCM heterogeneous polymerization showed that the polymerization accelerated at low initiator concentration, but the polymerization rate decreased with an increase of conversion at relatively high initiator concentrations. The chain‐transfer reaction to n‐butane was confirmed by a decrease of the molecular weight and broadening of the molecular weight distribution of PVC. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2179–2188, 2001  相似文献   

18.
19.
Photodynamic therapy (PDT) of solid tumors elicits a strong, acute inflammatory response characterized by a rapid and massive infiltration of activated neutrophils into the tumor. The present study investigated the impact of PDT on the systemic and local (treatment site) kinetics of neutrophil trafficking and activity in mouse SCCVII and EMT6 tumor models. Differential leukocyte counts in the peripheral blood of treated mice revealed a pronounced neutrophilia developing rapidly after Photofrin porfimer sodium (Photofrin)- or tetra(m-tetrahydroxyphenyl)chlorin (mTHPC)-based PDT. Significant neutrophilia was also observed upon PDT treatment of normal dorsal skin but not on the footpad of tumor-free mice. The changes in circulating neutrophil numbers were accompanied by an efflux of these cells from the bone marrow. An increased proportion of cells with high L-selectin (CD62L antigen) expression was found among bone-marrow-residing neutrophils 6-24 h after PDT, and in neutrophils in the peripheral circulation and treated tumors 24 h after therapy. Complement inhibition completely prevented the development of PDT-induced neutrophilia. The results of the present study demonstrate that treatment of solid tumors by PDT induces a strong and protracted increase in systemic neutrophil numbers mediated by complement activation. This reaction reflects rapid and massive mobilization and activation of neutrophils for the destruction of PDT-treated tumor tissue.  相似文献   

20.
Widespread multidrug resistance caused by the abuse of antibiotics calls for novel strategies and materials. Gold nanoclusters (AuNCs) are scarcely explored for combating multidrug‐resistant (MDR) bacteria in vivo. We herein synthesized a novel class of AuNCs, namely quaternary ammonium (QA) capped AuNCs (QA‐AuNCs) as potent antibiotics selectively targeting MDR Gram‐positive bacteria, including methicillin‐resistant Staphylococcus aureus (MRSA) and vancomycin‐resistant Enterococci (VRE), in vivo. QA‐AuNCs kill bacteria through a combined physicochemical mechanism, and show excellent therapeutic effects in both a skin infection model and a bacteremia model induced by MRSA. In addition, owing to their intense fluorescence, QA‐AuNCs can be used for the discrimination of live/dead bacteria and bacteria counting, suggesting their potential for clinical theranostics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号