首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption, desorption, and surface structural properties of Na and NO on Ag(111), together with their coadsorption and surface reactivity, have been studied by LEED, Auger spectroscopy, and thermal desorption. On the clean surface, non-dissociative adsorption of NO into the a-state occurs at 300 K with an initial sticking probability of ~0.1, saturation occurring at a coverage of ~120. Desorption occurs reversibly without decomposition and is characterised by a desorption energy of Ed ~ 103 kJ mol?1. In the coverage regime 0 < θNa < 1, sodium adsorbs in registry with the Ag surface mesh and the desorption spectra show a single peak corresponding to Ed ~ 228 kJ mol?1. For multilayer coverages (1 < θ Na < 5) a new low temperature peak appears in the desorption spectra with Ed ~ 187 kJ mol?1. This is identified with Na desorption from an essentially Na surface, and the desorption energy indicates that Na atoms beyond the first chemisorbed layer are significantly influenced by the presence of the Ag substrate. The LEED results show that Na multilayers grow as a (√7 × √7) R19.2° overlayer, and are interpreted in a way which is consistent with the above conclusion. Coadsorption of Na and NO leads to the appearance of a more strongly bound and reactive chemisorbed state of NO (β-NO) with Ed ~ 121 kJ mol?1. β-NO appears to undego surface dissociation to yield adsorbed O and N atoms whose subsequent reactions lead to the formation of N2, N2O, and O2 as gaseous products. The reactive behaviour of the system is complicated by the effects of Na and O diffusion into the bulk of the specimen, but certain invariant features permit us to postulate an overall reaction mechanism, and the results obtained here are compared with other relevant work.  相似文献   

2.
The surface structures formed on room temperature adsorption of chlorine on W(100) and subsequent annealing of the saturated surface have been characterised by LEED. The progress of gas adsorption was followed by AES which was also used to observe relative chlorine coverage on annealing. Room temperature adsorption was random up to the saturation exposure of 1.7 L. On annealing the chlorine adlayer ordering commenced at about 800 K. One-dimensional ordering into rows along the <1, 1> directions was followed by the ordering of these into two 2D structures: an interpenetrating 7111 at 830 K and an interpenetrating 5161 for 860 K and above. Desorption started after 1050 K annealing and was complete by 1440 K. Saturation chlorine coverage is inferred as 5 × 1014 atoms cm?2 and the single desorption peak coupled with the LEED analysis suggests that chlorine is bridge bonded to the W(100) surface for the ordered overlayer.  相似文献   

3.
Oxygen adsorbed on Pt(111) has been studied by means of temperature programmed thermal desorption spectroscopy (TPDS). high resolution electron energy loss spectroscopy (EELS) and LEED. At about 100 K oxygen is found to be adsorbed in a molecular form with the axis of the molecule parallel to the surface as a peroxo-like species, that is, the OO bond order is about 1. At saturation coverage (θmol= 0.44) a (32×32)R15° diffraction pattern is observed. The sticking probability S at 100 K as a function of coverage passes through a maximum at θ = 0.11 with S = 0.68. The shape of the coverage dependence is characteristic for adsorption in islands. Two coexisting types of adsorbed oxygen molecules with different OO stretching vibrations are distinguished. At higher coverages units with v-OO = 875 cm?1 are dominant. With decreasing oxygen coverages the concentration of a type with v-OO = 700 cm?1 is increased. The dissociation energy of the OO bond in the speices with v-OO = 875 cm?1 is estimated from the frequency shift of the first overtone to be ~ 0.5 eV. When the sample is annealed oxygen partially desorbs at ~ 160K, partially dissociates and orders into a p(2×2) overlayer. Below saturation coverage of molecular oxygen, dissociation takes place already at92 K. Atomically adsorbed oxygen occupies threefold hollow sites, with a fundamental stretching frequency of 480 cm?1. In the non-fundamental spectrum of atomic oxygen the overtone of the E-type vibration is observed, which is “dipole forbidden” as a fundamental in EELS.  相似文献   

4.
The adsorption of CO on Rh(111) has been studied by thermal desorption mass spectrometry and low-energy electron diffraction (LEED). At temperatures below 180 K, CO adsorbs via a mobile precursor mechanism with sticking coefficient near unity. The activation energy for first-order CO desorption is 31.6 kcal/mole (νd = 1013.6s?1) in the limit of zero coverage.As CO coverage increases, a (√3 ×√3)R30u overlayer is produced and then destroyed with subsequent formation of an overlayer yielding a (2 × 2) LEED pattern in the full coverage limit. These LEED observations allow the absolute assignment of the full CO coverage as 0.75 CO molecules per surface Rh atom. The limiting LEED behavior suggests that at full CO coverage two CO binding states are present together.  相似文献   

5.
The adsorption of potassium and the coadsorption of potassium and oxygen on the Pt(111) and stepped Pt(755) crystal surfaces were studied by AES, LEED, and TDS. Pure potassium adlayers were found by LEED to be hexagonally ordered on Pt(111) at coverages of θ = K0.9–;1. The monolayer coverage was 5.4 × 1014K atoms/cm2 (0.36 times the atomic density of the Pt(111) surface). Orientational reordering of the adlayers, similar to the behavior of noble gas phase transitions on metals, was observed. The heat of desorption of K decreased, due to depolarization effects, from 60 kcal/mole at θK <0.1, to 25 kcal/mole at θK = 1 on both Pt(111) and Pt(755). Exposure to oxygen thermally stabilizes a potassium monolayer, increasing the heat of desorption from 25 to 50 kcal/mole. Both potassium and oxygen were found to desorb simultaneously indicating strong interactions in the adsorbed overlayer. LEED results on Pt(111) further indicate that a planar K2O layer may be formed by annealing coadsorbed potassium and oxygen to 750 K.  相似文献   

6.
A detailed LEED study is reported of the surface phases stabilised by hydrogen chemisorption on W {001}, over the temperature range 170 to 400 K, correlated with absolute determinations of surface coverages and sticking probabilities. The saturation coverage at 300 K is 19(± 3) × 1014 atoms cm?2, corresponding to a surface stoichiometry of WH2, and the initial sticking probability for both H2 and D2 is 0.60 ± 0.03, independent of substrate temperature down to 170 K. Over the range 170 to 300 K six coverage-dependent temperature-independent phases are identified, and the transition coverages determined. As with the clean surface (2 × 2)R45° displacive phase, the c(2 × 2)-H phase is inhibited by the presence of steps and impurities over large distances (~20 Å), again strongly indicative of CDW-PLD mechanisms for the formation of the H-stabilised phases. These phases are significantly more temperature stable than the clean (2 × 2)R45°, the most stable being a c(2 × 2)-H split half-order phase which is formed at domain stoichiometries between WH0.3 and WH0.5. LEED symmetry analysis, the dependence of half-order intensity and half-width on coverage, and I-V spectra indicate that the c(2 × 2)-H phase is a different displacive structure from that determined by Debe and King for the clean (2 × 2)R45°. LEED I-V spectra are consistent with an expansion of the surface-bulk interlayer spacing from 1.48 to 1.51 Å as the hydrogen coverage increases to ~4 × 1014 atoms cm?2. The transition from the split half-order to a streaked half-order phase is found to be correlated with changes in a range of other physical properties previously reported for this system. As the surface stoichiometry increases from WH to WH2 a gradual transition occurs between a phase devoid of long-range order to well-ordered (1 × 1)-H. Displacive structures are proposed for the various phases formed, based on the hypothesis that at any coverage the most stable phase is determined by the gain in stability produced by a combination of chemical bonding to form a local surface complex and electron-phonon coupling to produce a periodic lattice distortion. The sequence of commensurate, incommensurate and disordered structures are consistent with the wealth of data now available for this system. Finally, a simple structural model is suggested for the peak-splitting observed in desorption spectra.  相似文献   

7.
The interaction of sulphur vapour with a W(100) surface is studied in detail with Auger Electron Spectroscopy (AES), LEED, work function difference (Δ?) measurements and thermal desorption spectroscopy (TDS). The dissociative adsorption of S occurs on the W surface without reconstruction. Several LEED structures are observed which indicate repulsive adatom interactions. TDS shows that the desorption energy of atomic S decreases from about 8 eV at θ = 0.1 ML to about 3 eV near saturation in close vicinity of 1 ML. Above θ = 34 ML, S2 desorbs in addition to S in a high temperature peak which saturates at about 1 ML. Sulphur in excess of about 1 ML is desorbed in two low temperature peaks of which the lower one consists not only of S and S2 but also of S3 and S4.  相似文献   

8.
The interaction of NO with a Ni (111) surface was studied by means of LEED, AES, UPS and flash desorption spectroscopy. NO adsorbs with a high sticking probability and may form two ordered structures (c4 × 2 and hexagonal) from (undissociated) NOad. The mean adsorption energy is about 25 kcalmole. Dissociation of adsorbed NO starts already at ?120°C, but the activation energy for this process increases with increasing coverage (and even by the presence of preadsorbed oxygen) up to the value for the activation energy of NO desorption. The recombination of adsorbed nitrogen atoms and desorption of N2 occurs around 600 °C with an activation energy of about 52 kcalmole. A chemisorbed oxygen layer converts upon further increase of the oxygen concentration into epitaxial NiO. A mixed layer consisting of Nad + Oad (after thermal decomposition of NO) exhibits a complex LEED pattern and can be stripped of adsorbed oxygen by reduction with H2. This yields an Nad overlayer exhibiting a 6 × 2 LEED pattern. A series of new maxima at ≈ ?2, ?8.8 and ?14.6 eV is observed in the UV photoelectron spectra from adsorbed NO which are identified with surface states derived from molecular orbitals of free NO. Nad as well as Oad causes a peak at ?5.6 eV which is derived from the 2p electrons of the adsorbate. The photoelectron spectrum from NiO agrees closely with a recent theoretical evaluation.  相似文献   

9.
Eldad Herceg 《Surface science》2006,600(19):4563-4571
The formation of a well-ordered p(2 × 2) overlayer of atomic nitrogen on the Pt(1 1 1) surface and its reaction with hydrogen were characterized with reflection absorption infrared spectroscopy (RAIRS), temperature programmed desorption (TPD), low energy electron diffraction (LEED), Auger electron spectroscopy (AES), and X-ray photoelectron spectroscopy (XPS). The p(2 × 2)-N overlayer is formed by exposure of ammonia to a surface at 85 K that is covered with 0.44 monolayer (ML) of molecular oxygen and then heating to 400 K. The reaction between ammonia and oxygen produces water, which desorbs below 400 K. The only desorption product observed above 400 K is molecular nitrogen, which has a peak desorption temperature of 453 K. The absence of oxygen after the 400 K anneal is confirmed with AES. Although atomic nitrogen can also be produced on the surface through the reaction of ammonia with an atomic, rather than molecular, oxygen overlayer at a saturation coverage of 0.25 ML, the yield of surface nitrogen is significantly less, as indicated by the N2 TPD peak area. Atomic nitrogen readily reacts with hydrogen to produce the NH species, which is characterized with RAIRS by an intense and narrow (FWHM ∼ 4 cm−1) peak at 3322 cm−1. The areas of the H2 TPD peak associated with NH dissociation and the XPS N 1s peak associated with the NH species indicate that not all of the surface N atoms can be converted to NH by the methods used here.  相似文献   

10.
The chemisorption of NO on clean and Na-dosed Ag(110) has been studied by LEED, Auger spectroscopy, and thermal desorption. On the clean surface, non-dissociative adsorption into the α-state occurs at 300 K with an initial sticking probability of ~0.1, and the surface is saturated at a coverage of about 125. Desorption occurs without decomposition, and is characterised by an enthalpy of Ed ~104 kJ mol?1 — comparable with that for NO desorption from transition metals. Surface defects do not seem to play a significant role in the chemistry of NO on clean Ag, and the presence of surface Na inhibits the adsorption of αNO. However, in the presence of both surface and subsurface Na, both the strength and the extent of NO adsorption are markedly increased and a new state (β1NO) with Ed ~121 kJ mol?1 appears. Adsorption into this state occurs with destruction of the Ag(110)-(1 × 2)Na ordered phase. Desorption of β1NO occurs with significant decomposition, N2 and N2O are observed as geseous products, and the system's behaviour towards NO resembles that of a transition metal. Incorporation of subsurface oxygen in addition to subsurface Na increases the desorption enthalpy (β2NO), maximum coverage, and surface reactivity of NO still further: only about half the adsorbed layer desorbs without decomposition. The bonding of NO to Ag is discussed, and comparisons are made with the properties of α and βNO on Pt(110).  相似文献   

11.
The adsorption of Na and the coadsorption of Na and O2 on Ag(110) have been studied by LEED, thermal desorption, and Auger spectroscopy. For Na coverages in the regime 0 < θNa < 2 the Na desorption spectra show a single peak (β) corresponding to a desorption energy of ~195 kJ mol?1, and at θNa ~ 2 a (1 × 2) LEED pattern appears. At still higher coverages (2 < θNa < 5), a (1 × 3) surface phase is formed, and a new peak (α) appears in the desorption spectra; this is identified with Na desorption from an essentially Na surface. The desorption energy of αNa (~174 kJ mol?1) indicates that Na adatoms beyond the first chemisorbed layer are significantly influenced by the presence of the Ag substrate. The initial sticking probability of O2 on Na-dosed Ag(110) is enormously enhanced over the clean surface value, being of the order of unity, and O2 chemisorption ultimately leads to a (4 × 1) surface structure. The presence either subsurface Na alone, or of both Na and O below the surface, causes substantial changes in surface behaviour. In the former case, submonolayer doses of Na lead to the appearance of a (1 × 2) structure; and in the latter case, Na + O2 coadsorption results in a c(4 × 2) structure. Auger spectroscopy indicates that the Ag(110)-c(4 × 2)NaO phase forms with a constant stoichiometry which is independent of the initial Na dose. The Na:O ratio in this adlayer is believed to be of the order of unity. The structures of the various ordered phases, the nature of the AgNa bonding, and the interatomic spacing between the alkali adatoms on Ag(110) are discussed.  相似文献   

12.
Reflection-adsorption infrared spectroscopy has been combined with thermal desorption and surface stoichiometry measurements to study the structure of CO chemisorbed on a {111}- oriented platinum ribbon under uhv conditions. Desorption spectra show a single peak at coverages > 1014 molecules cm?2, with the desorption energy decreasing with increasing coverage up to 0.4 of a monolayer, and then remaining constant at ≈135 kJ mol?1 until saturation. The “saturation” coverage at 300 K is 7 × 1014 molecules cm?2, and no new low temperatures state is formed after adsorption at 120 K. Infrared spectra show a single very intense, sharp band over the spectral range investigated (1500 to 2100 cm?1), which first appears at low coverages at 2065 cm?1 and shifts continuously with increasing coverage to 2101 cm?1 at 7 × 1014 molecules cm?2. The halfwidth of the band at 2101 cm?1 is 9.0 cm?1, independent of temperature and only slightly dependent on coverage. The band intensity does not increase uniformly with increasing coverage, and hysteresis is observed between adsorption and desorption sequences in the variation of both the band intensity and frequency as a function of coverage. The frequency shift and the virtual invariance of the absorption band halfwidt with increasing coverage (Jespite recent LEED evidence for overlayer compression in this system) are attributed to strong dipole-dipole coupling in the overlayer.  相似文献   

13.
W Mokwa  D Kohl  G Heiland 《Surface science》1984,139(1):98-108
The UHV cleaved (110) face has been exposed to water in the range from 10 L to 2 × 104 L. The main TDS peak in H2O desorption appears at 350 K, independent of coverage. The low desorption energy of 0.7 eV (16 kcal/mol) is reasonable for oxygen atoms bound via the lone pair orbital to As as was earlier derived from UPS measurements. A broad spur between 450 and 600 K may be related to O-Ga bonds. The sticking probability shows values below 10-4; only near 4.8 × 103 L (6 × 1015 cm-2 s-1 H2O molecules for 300 s) corresponding to a coverage of about 0.4 monolayes a steep maximum appears. At about one monolayer saturation is observed. Exposures to more than 104 L of water quench the intensity of the (10) LEED spot considerably stronger than the intensity of the (11) spot. A comparison of the I(E) curves with existing model calculations suggests that the observed behaviour of the LEED spots is caused by a change in surface structure towards the unrelaxed configuration. The higher sticking coefficient observed near 0.4 monolayers may be connected with this rearrangement of surface atoms.  相似文献   

14.
The adsorption of 12CO on Ir films evaporated under ultrahigh vacuum (UHV) conditions was studied using infrared reflection-absorption spectroscopy (IRAS). Only a single absorption band was observed at 300 K, shifting continuously from the “singleton” value ~2010 cm?1 at very low coverages to 2093 cm?1 at saturation coverage. This band is attributed to CO adsorbed on top of the surface atoms. Synchronously with this shift the bandwidth at half maximum intensity Δv12 decreases from ~30 to 8 cm?1. The integrated peak area increases linearly with coverage up to a relative coverage (θr) of approximately 0.4, then the increase levels off and a maximum is observed. Upon continuing adsorption the intensity decreases slightly. In addition results are presented on adsorption at 300 K of 12CO?13CO isotopic mixtures. The coverage induced frequency shift is discussed in terms of a dipole-dipole coupling mechanism and it is concluded that intermolecular coupling can explain the shift (~83 cm?1) observed. The decrease in intensity at coverages > 0.4 is attributed to the formation of a compressed overlayer with part of the CO molecules adsorbed in a multicentre position with different spectral properties. No infrared bands of nitrogen adsorbed at 78 K could be detected at pressures up to 6.7 kPa (1 Pa = 0.0075 Torr, 1 Torr = 133.32 Pa).  相似文献   

15.
HBr and HCl react with Pt(111) and Pt(100) surfaces to form adsorbed layers consisting of specific mixtures of halogen atoms and hydrogen halide molecules. Exposure of Pt(111) to HBr yielded a (3×3) LEED pattern beginning at ΘBr = 29 and persisting at the maximum coverage which consisted of ΘBr = 13 plus ΘHBr = 19. The most probable structure at maximum coverage, Pt(111)[c(3 × 3)]-(3 Br + HBr), nas a rhombic unit cell encompassing nine surface Pt atoms, and containing three Br atoms and one HBr molecule. On Pt(100) the structure at maximum coverage appears to be Pt(100)[c(2√2 × √2)]R45°-(Br + HBr), ΘBr = ΘHBr = 14; the rectangular unit cell involves four Pt atoms, one Br atom and one HBr molecule. Each of these structures consists of an hexagonal array of adsorbed atoms or molecules, excepting slight distortion for best fit with the substrate in the case of Pt(100). Treatment of Pt(100) with HCl produced a diffuse Pt(100)(2 × 2)-(Cl + HCl) structure at the maximum coverage of ΘCl = 0.13, ΘHCl = 0.11. Exposure of Pt(111) to HCl produced a disordered overlayer. Thermal desorption, Auger spectroscopy and mass spectroscopy provided coverage data. Thermal desorption data reveal prominent rate maxima associated with the structural transitions observed by LEED. Br and HBr, Cl and HCl were the predominant thermal desorption products.  相似文献   

16.
17.
At 300 K and in the coverage regime (0<θ<13) bromine chemisorbs rapidly on Pd(111); the sticking probability and dipole moment per adatom remain constant at 0.8 ± 0.2 and 1.2 D, respectively. This stage is marked by the appearance of a √3 structure: desorption occurs exclusively as atomic Br. At higher coverages, desorption of molecular Br2 begins (desorption energy ~130 kJ mol?1) as does the nucleation and growth of PdBr2 on the surface. This latter stage is signalled by the appearance of a √2 LEED pattern and the observation of PdBr2 as a desorption product (desorption energy ~37 kJ mol?1). Some PdBr2 is also lost by surface decomposition and subsequent evaporation of atomic Br. The data indicate that the transition state to Br adatom desorption is localised and that PdBr2(a) ? Br(a) interconversion occurs; these surface species do not appear to be in thermodynamic equilibrium during the desorption process.  相似文献   

18.
The adsorption of Xe on a Ni(100) surface has been studied in UHV between 30 and 100 K using LEED, thermal desorption spectroscopy (TDS), work function (Δφ) measurements, and UV photoemission (UPS). At and below 80 K, Xe adsorbs readily with high initial sticking probability and via precursor state adsorption kinetics to form a partially ordered phase. This phase has a binding energy of ~5.2 kcal/mole as determined by isosteric heat measurements. The heat of adsorption is fairly constant up to medium coverages and then drops continuously as the coverage increases, indicating repulsive mutual interactions. The thermal desorption is first order with a preexponential factor of about 1012 s?1, indicative of completely mobile adsorption. Adsorbed Xe lowers the work function of the Ni surface by 376 mV at monolayer coverage. (This coverage is determined from LEED to be 5.65 × 1014 Xe molecules/cm-2.) For not too high coverages, θ, Δφ(θ) can be described by the Topping model, with the initial dipole moment μ0 = 0.29 D and the polarizability α being 3.5 × 10?24 cm3. In photoemission, the Xe 5p32 and 5p12 orbitals show up as intense peaks at 5.56 and 6.83 eV below Ef which do not shift their position as the coverage varies. Multilayer adsorption (i.e. the filling of the second and third layers) can be seen by TDS. The binding energies of these α states can be estimated to range between 4.5 and 3.5 kcal/mole. The results are compared and contrasted with previous findings of Xe adsorption on other transition metal surfaces and are discussed with respect to the nature of the inert-gas-metal adsorptive bond.  相似文献   

19.
The adsorption of alkali metals on transition metals can produce several technologically important effects, but only limited results have been reported on the geometrical structure of such adlayers, especially for adsorption temperatures below 300 K. We have examined the adsorption of Na on Ru(001) as a function of coverage and temperature using LEED to determine the adlayer structure and thermal desorption spectroscopy to characterize binding kinetics and relative Na coverages. The only Na LEED pattern observed following adsorption at 300 K was that of (32 × 32) structure which occurred near saturation of the first layer. However, Na adsorbed at 80 K produces a progression of distinct, ordered LEED patterns with increasing coverage which does not include the (32 × 32) pattern. These patterns result from increasingly compressed, hexagonal arrangements of adsorbate atoms which are uniformly spaced due to mutually repulsive interactions. The order-disorder transition temperature for each structure was also determined by LEED and used to develop a 2D phase diagram for Na on Ru(001). Ordered structures were observed only when Na thermally induced motion was sufficiently limited and the repulsive Na-Na interaction could force the uniform spacing of Na atoms. Thus, low coverage structures only developed where Na mobility was limited by low temperature. High coverage structures were stable to much higher temperatures since motion was inhibited by the high Na density.  相似文献   

20.
Low Energy Ion Scattering has been used to study the interaction of molecular oxygen with a Cu{110} surface. The amount of adsorbed atomic oxygen was monitored by the 4 keV Ne+¦O reflection signal. In the first adsorption stage (coverage less than half a monolayer) the sticking probability varied proportional to the number of empty adsorption sites: S = S0 (1 ? \?gq). It turned out not to be influenced by the Ne+ bombardment. The initial sticking probability S0 was found to be ≈ 0.24. In this first adsorption stage the oxygen-covered surface is reconstructed according to the “missing row” model, leading to a (2 × 1) LEED pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号