首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Binding states of deposited Ga and Sn on the W and Mo substrates were studied by measuring the evaporation fields of the deposited metal atoms at various temperatures. Ga and Sn form two layers: an overlayer and an underneath pseudomorphic layer which directly contacts the substrate surface. The evaporation fieds of the overlayer Ga and Sn atoms were found to be the same on various crystal planes and significantly lower than that of the pseudomorphic Ga and Sn atoms, indicating that the binding between the overlayer atoms and the pseudomorphic atoms is much weaker than that between the pseudomorphic atoms and the substrate W and Mo atoms. The finding that the evaporation field of the pseudomorphic atoms on W is very close to that on Mo while the evaporation field of W is significantly higher than that of Mo was unexpected. Another interesting finding is that the field emission current from the (011) plane is not noticeably affected by the coverage of the mono-atomic Ga layer arranged in the superstructure while the current from other crystal planes covered by the pseudomorphic layer having the same atomic arrangement with the substrate surface is minimized. Furthermore, it has been found that the evaporation field of the Ga overlayer is lower than that of Sn, while the Ga pseudomorph is more stable than Sn pseudomorph on W surface at temperatures below about 100 K. The temperature dependence of the evaporation field was also examined and compared with existing models.  相似文献   

2.
The processes occuring in the course of heating of a tungsten tip in an electric field and resulting in the formation of the 〈111〉 trihedral angle at the intersection of three {011} closest packed planes in the crystal lattice of tungsten are investigated using field-emission microscopy, continuous-mode field-desorption microscopy, and high-temperature field evaporation microscopy. It is demonstrated that atomically sharp angles can be formed at temperatures above 2200 K in the absence of field evaporation. An atom forming the apex of the trihedral angle lies in the triangle of atoms arranged in the (111) plane. In the triangle, each atom is located at the intersection of the 〈111〉 close-packed atomic rows, which are the boundaries of the {011} planes forming the trihedral angle and the {112} planes forming the angle edges two rows in width.  相似文献   

3.
The surface structure near the 〈111〉 trihedral angle, which forms in an electric-field-heated tungsten tip, is studied by field electron microscopy, continuous-mode field desorption microscopy, and high-temperature field evaporation microscopy. The shape and structure of the surface depend on the temperature, field, and time. The angle is formed by three {011} planes, with the (111) plane at its vertex being retained in the form of a triangle or a hexagon with randomly arranged atomic clusters. The edges between {011} faces represent long and narrow {112} planes having longitudinal or transverse steps. In the absence of field evaporation, the edges and angle sharpen, becoming monoatomic. Field evaporation from the angle or microprotrusions on the edges extends these edges and causes transverse steps to appear on them. The explanation of the changes in the shape and structure of the surface is based on considering the competition of surface diffusion, crystal growth in an electric field, and field evaporation.  相似文献   

4.
A molecular beam technique for the determination of sticking probabilities and surface coverages was used in earlier work to investigate the adsorption of nitrogen on tungsten {110}, {111} and {100} single crystal planes. In the present paper these studies have been extended to the {310}, {320} and {411} planes. Absolute sticking probabilities and adatom surface coverages are reported for crystal temperatures between 90 K and 960 K. Crystallographic anisotropy in this system is exemplified by zero coverage sticking probabilities with the crystal at room temperature: {110}, 1̃0?2; {111}, 0.08; {411}, 0.4; {100}, 0.59; {310}, 0.72; {320}, 0.73. Results for planes on the [001] zone are quantitatively described by a general model developed for adsorption on stepped planes as an extension to the precursor-state order-disorder model for adsorption kinetics of King and Wells. It is shown that nitrogen dissociation only takes place at vacant pairs of {100} sites, but that subsequently the chemisorbed adatoms so formed may migrate out onto {110} terraces. The results are critically analysed in terms of the available LEED and work function data for nitrogen on tungsten single crystal planes, and the general model developed by Adams and Germer.  相似文献   

5.
Field desorption of potassium from the (001), (011) and (112) tungsten planes in the temperature range 80–140 K and in the field range 0.10–0.55 V/Å has been investigated using the field emission micrscope with Faraday cage and a rotatable emitter. Generally good agreement with the results, obtained previously by other authors for other adsorbates and for the whole emitter tip, was found. However the temperature dependence of the desorption field is different for some crystal planes. The binding energy at zero coverage and zero field was determined. The values of 1.95 eV, 1.75 eV and 2.0 eV were obtained for the (001), (011) and (112) planes, respectively. The degree of desorption was also measured as a function of desorbing field and a significant difference of this dependence for the (001) and (011) planes was found.  相似文献   

6.
After deposition of aluminum oxide on a tungsten field emission microscope (FEM) tip and stepwise heating, three stages of emission changes were observed on {100}. Stages I and II cause work function decreases of 0.28 and 0.07 eV, respectively. Stage III is characterized by a large increase (Δ??+3 eV). The changes are discussed in terms of interaction of decomposition products (oxygen and aluminum) and adsorption of aluminum oxide. On {110} only a single aluminum oxide layer growth, which results in a work function decrease to ?=4.69 eV, is observed. The field electron emission from this layer was measured between 1400°K and room temperature. The experimental values were compared with those determined from Christov's unified theory of field and thermionic emission. The {110} layer values coincide with those obtained earlier from an aluminum oxide covered tungsten {112}.  相似文献   

7.
Changes in the shape and emission characteristics of the atomically sharp trihedral 〈111〉 angle of a tungsten tip reconstructed in an electric field are studied by continuous-mode field desorption microscopy during high-current-density field emission. The main changes in the tip shape and the slope of the Fowler-Nordheim characteristic occur at an emission current of 1–5 μA. At a current of 50–100 μA taken from the angle, the tip shape and emission characteristics stabilize and remain unchanged in the range 0–150 μA. The new tip shape is characterized by the widening of the angle edges; the appearance of {112} and {001} plane steps in them; a decrease in the sizes of the {011} planes forming the angle faces; and the appearance of steplike transition regions between {011}, {001}, and {112} faces. These changes in the tip shape are related to the fact that the emission field is weaker than the electric field used for preliminary tip reconstruction, the weakening of the field by the space charge of emitted electrons, and a nonuniform temperature distribution in the tip.  相似文献   

8.
In order to investigate whether field-emission microscopy (FEM) can be applied to the examination of adsorption on low-melting metals, a study has been made of the preparation and the stabilization of silver surfaces that are suitable as field electron emitters. Single silver whiskers, showing negligibly distorted FEM patterns, could be grown at 873 K by in-situ deposition of silver vapour onto the apex of thermally cleaned blunt tungsten tips. Single-crystal silver layers could be grown at 296 K by the same technique on field-evaporated sharp tungsten tips. The nucleation and growth of the layers take place more uniformly on these crystallographically perfect surfaces than on thermally cleaned tips. At elevated temperatures (673 K) considerable diffusion of silver from the apex of the tip to the shank was noticed when the latter had been thoroughly cleaned by previous heating. The occurrence of this effect was avoided by applying the field-evaporation step in the tip-preparation procedure after the tip had been strongly oxidized ; thus, the oxidized tungsten bordering the cleaned apex acts as a silver diffusion barrier. The silver surfaces obtained have a high degree of cleanliness. Adsorbed oxygen can easily be removed by heating to 673 K ; hardly any blunting results from this treatment. However, when a silver layer has been strongly oxidized, complete field desorption of silver reveals oxidation also of the tungsten at the tungsten-silver interface. Application of positive voltages to a crystalline silver layer on a tungsten tip at 77 K in ultra-high vacuum deforms the layer extensively before actual field evaporation of silver is achieved.  相似文献   

9.
The growth of a single-atom sharp pyramid tips on a tungsten substrate by depositing noble metals of the Pt family was investigated by field ion microscopy earlier. The Pd or Pt covered single-atom W pyramidal tips have been successfully prepared and established by our group. They are thermally and chemically stable and can easily be regenerated. In this study, we report the establishing and structural analysis of Rh and Ir covered single-atom W pyramidal tips. Two types of stable structures with bcc {2 1 1} facets are found for both metals. One is stacked by 1, 3, 10 atoms, and the other is stacked by 1, 6, 15 atoms for the top three layers and so on in series from the top to the deeper layers. The single atom tip is destroyed layer by layer after field evaporation to observe the structures of the different layers. However, the tip can be regenerated after it is annealed again and the two types of structures appear systematically depending on the annealing temperature. The regeneration process is investigated and the growth parameters of the two different types of Rh or Ir covered W tip are determined. The differences in the activation barrier and binding energy of these two types are calculated to be 0.08 eV and 0.064 eV for Rh covered single atom tips, and 0.03 eV and 0.14 eV for Ir covered single atom tips, respectively. Possible mechanisms and the relevance for application are discussed.  相似文献   

10.
Growth of indium single crystals on tungsten field emission tips was carried out by deposition of indium from vapour in ultra high vacuum, using substrate temperatures in the range of 293–420 K. Two different tungsten tips were used as the substrate: a perfect W single crystal in one case and a bi-crystal with a distinct grain boundary in the other. No influence of the grain boundary on the epitaxial growth was found. Two orientation relationships were observed mostly: {111}In ∥ {110}W with 〈110〉In ∥ 〈111〉W and {111}In ∥ {100}W with 〈110〉In ∥ 〈110〉W. In the first case the growth was initiated by the indium nucleus created on the ledges of the {110}W plane. A field strength of 0.9 V/Å was found for the evaporation field of indium. The field strength of the desorption of In-W interfacial layer atoms was found to be 4.4–5.2 V/Å. A mechanism of the growth of indium crystals has been proposed.  相似文献   

11.
Yang J  Hu W  Tang J 《J Phys Condens Matter》2011,23(39):395004
The diffusion of single tungsten adatoms on the surfaces of rhombohedral clusters is studied by means of molecular dynamics and the embedded atom method. The energy barriers for the adatom diffusing across and along the step edge between a {110} facet and a neighboring {110} facet are calculated using the nudged elastic band method. We notice that the tungsten adatom diffusion across the step edge has a much higher barrier than that for face-centered cubic metal clusters. The result shows that diffusion from the {110} facet to a neighboring {110} facet could not take place at low temperatures. In addition, the calculated energy barrier for an adatom diffusing along the step edge is lower than that for an adatom on the flat (110) surface. The results show that the adatom could diffuse easily along the step edge, and could be trapped by the facet corner. Taking all of this evidence together, we infer that the {110} facet starts to grow from the facet corner, and then along the step edge, and finally toward the {110} facet center. So the tungsten rhombohedron can grow epitaxially along the {110} facet one facet at a time and the rhombohedron should be the stable structure for both large and small tungsten clusters.  相似文献   

12.
The structural aspect of the formation of Ni(CO)4 by the reaction of CO with solid nickel has been studied. The nickel initial state was a nearly hemispherical single crystal as prepared by field evaporation of a nickel field emitter tip. Field-free reaction of CO with the clean nickel surface took place at pressures up to 2 mbar, reaction times up to 45 h, and at a temperature of 373 K, which as a result from work by others was found optimum for highest rates of Ni(CO)4 formation. Neon field ion imaging at 80 K after reaction with CO showed the crystal always in an intermediate state, which had the features: (1) Areas of {;111} were increased; (2) at half angles between a central (111) and peripherical {111} planes there were {110} planes flanked by {210}, and {100} flanked by {511}, respectively; (3) with the exception of the planes mentioned in feature (2), the remaining surface area was more than mono-atomically stepped. From these results and in accordance with the theory of crystal growth (Kossel, Stranski) and the theory of crystal dissolution (Lacmann, Franke, Heimann) a pure octahedron is expected to be the final state of the crystal. This implies that nickel atoms removed by the reaction are most frequently taken from 〈110〉 atom chains of the {111} planes.  相似文献   

13.
Surface enhanced Raman scattering of adsorbates (Ag0-Cl?, H2O and pyridine) on Ag electrodes in 1M KC1 and 1M KCl+0.05M pyridine electrolytes was monitored continuously with an optical multichannel analyzer system as the electrode potential was cycled over various ranges within nonfaradaic regions of the oxidation-reduction cycle. A systematic investigation was performed of the potential dependence of SERS of pyridine in 1M KX + 0.05M pyridine electrolytes, where X = F, Cl, Br and I. Since the surface coverage of the adsorbates is reversible with potential cycling within a potential range, it was possible to determine potential dependences of the irreversible loss in the SERS enhancement factor which occurs as the electrode potential is ramped toward the potential of zero charge (PZC). The results provide strong support for the role of adatoms on the electrode surface in the overall enhancement mechanism. There is evidence that the strongly bound adsorbates immobilize the adatoms at positive potentials but allow the adatoms to migrate and become lost at surface defects as the potential approaches the PZC where the adsorbates are less tightly bound.  相似文献   

14.
Reconstruction of a tungsten surface by adsorbed layers of gold, silver and copper has been studied by field emission and field ion microscopy. Gold reconstructs the surface in three ways, termed the α, β and γ rearrangements. The α rearrangement, which results in a smoothing of the tungsten surface, takes place at around 400° K with gold coverages of 5 monolayers (5θ), and is thought to be an increase in structural perfection of the tungsten surface by gold-assisted surface diffusion of tungsten atoms, β-reconstruction takes place in the temperature range 480–950°K at coverages ? 1.7θ, producing a faceted surface which comprises {211} and {110} facets, and is thought to result from the need to minimise the free energy at the gold/tungsten interface. The γ structure, which appears above 1400°K, is believed to represent a change in the shape of the tip by transport of tungsten to the (110) locality. Adsorbed silver produces neither β nor γ structures, and the degree of α rearrangement is very small, being confined to the {230} regions of the substrate. Copper lies between silver and gold in its ability to rearrange the tungsten surface, some degree of α rearrangement is detectable, and the β structure is very poorly developed unlike the γ structure which is clearly formed. The binding strength of copper to tungsten is greater than that of silver, but less than that of gold; the capacity of an adsorbate, to reconstruct the tungsten substrate is therefore thought to be related to the strength of the adsorbate-substrate bond.  相似文献   

15.
The effects of high-electric fields on oxidation of tungsten single crystals in 6 × 10?4 torr of oxygen at 1200–1500 °K were studied by field emission and transmission electron microscopy. Exposure of field emitters to oxygen in the absence of a field resulted in the build-up of emitter tips. Oxidation under the application of a negative or positive field, on the other hand, involved plane faceting and formation of oxide crystallites. Plane faceting was recognized to occur on the {111} and the {112} regions, showing the facetings of the {111} and the {112} planes into the {110} planes, whereas, crystallite formation seemed to take place selectively on the {100} regions. It was suggested by field emission microscopy that negative fields have an additional effect which causes the growth of an oxide crystal on the (110) plane. Transmission electron microscopy of an emitter oxidized in a negative field actually revealed a tiny oxide crystal with a size of ~ 300 Å grown on the developed (110) plane. The crystal exhibited a triangular shadow image strongly indicating an external pyramid-like form.  相似文献   

16.
The well-known low-temperature phase transition sqrt[3]xsqrt[3] to 3x3 for the 1/3 monolayer of Sn adatoms on the Ge(111) surface has been studied by scanning tunneling microscopy. The STM tip was used as a probe to record the tunneling current as a function of time on top of the Sn adatoms. The presence of steps on the current-time curves allowed the detection of fluctuating Sn atoms along the direction vertical to the substrate. We discuss the effect of temperature and surface defects on the frequency of the motion, finding consistency with the dynamical fluctuations model.  相似文献   

17.
Atomic recoil events at and near {001} surfaces of Ni3Al due to elastic collisions between electrons and atoms have been simulated by molecular dynamics to obtain the sputtering threshold energy as a function of atomic species, recoil direction and atomic layer of the primary recoil atom. The minimum sputtering energy occurs for adatoms and is 3.5 and 4.5?eV for Al and Ni adatoms on the Ni–Al surface (denoted ‘M’), respectively, and 4.5?eV for both species on the pure Ni surface (denoted ‘N’). For atoms within the surface plane, the minimum sputtering energy is 6.0?eV for Al and Ni atoms in the M plane and for Ni atoms in the N surface. The sputtering threshold energy increases with increasing angle, θ, between the recoil direction and surface normal, and is almost independent of azimuthal angle, ?, if θ<60°; it varies strongly with ? when θ>60°, with a maximum at ??=?45° due to ?{110}? close-packed atomic chains in the surface. The sputtering threshold energy increases significantly for subsurface recoils, except for those that generate efficient energy transfer to a surface atom by a replacement collision sequence. The implications of the results for the prediction of the mass loss due to sputtering during microanalysis in a FEG STEM are discussed.  相似文献   

18.
L.E. Firment 《Surface science》1982,116(2):205-216
Temperature dependent faceting of rutile TiO2 surfaces cut to the (001) plane has been reported [Tait and Kasowski, Phys. Rev. B20 (1979) 5178]. By comparing LEED data to beam positions calculated for various sets of facet planes, the facet planes have been identified. The first ordered structure observed on annealing ion bombarded surfaces is composed of {011} facets with the facet planes in a (2 × 1) reconstruction. The high temperature structure produced on annealing above 1300K is best described as {114} facets; however, there are deviations of the observed LEED pattern from that calculated for {114} facets, possibly because of the presence of related planes. LEED data have now been obtained on the behavior of (110), (100), (011), (114), and (001) surfaces in UHV. The observed stability of TiO2 surfaces can be related to the Ti ion coordination numbers in the surface plane as derived from stoichiometric terminations of the rutile lattice.  相似文献   

19.
The work functions φhklof tungsten single crystal planes as functions of the surface densities Nhkl of the adsorbed potassium have been measured by means of the field emission method. Sealed-off field emission tubes with a Faraday collector and rotatable emitter were used. Another, special tube was made in order to determine the surface density of potassium. The unequilibrated adlayers on {110}, {112}, {100} and {111} tungsten single crystal planes have been investigated. For all the planes investigated the φhkl(Nhkl) dependence exhibited a distinct minimum. An attempt has been made to compare the experimental results with the theoretical models suggested recently.  相似文献   

20.
Physics of Atomic Nuclei - The elastic scattering angular distributions of the weakly bound $${}^{9}$$ Be projectile by $${}^{27}$$ Al, $${}^{64}$$ Zn, $${}^{89}$$ Y, $${}^{120}$$ Sn, and...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号