首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work is part of a more extensive research carried out in Naples on cigarette combustion. Theoretical and modelling work highlighted the existence of a misdistribution of the gas flow across the cigarette cross-section, which results into locally variable conditions. As a consequence, oxygen-starving versus oxygen-rich conditions do establish in the pre-heat zone of the cigarette, where pyrolysis of cigarette components takes place. More specifically, oxygen-starving conditions should characterize the process of reaction front propagation in the inner part of the cigarette, close to its axis, while oxygen-rich conditions should establish at the cigarette periphery, close to the paper burn line.The present paper addresses the pattern and the kinetics of pyrolysis under inert and under oxidative conditions of three types of tobacco. The experimental work consists of non-isothermal thermogravimetric analysis at heating rates comprised between 5 and 20 °C/min and with different He–oxygen mixtures. Kinetic expressions for the rate of pyrolysis under inert and under oxidative conditions have been obtained for each ingredient investigated.Results, albeit obtained at sample heating rates smaller than those relevant to actual cigarette burning, highlight the profound differences arising under purely pyrolytic or oxy-pyrolytic conditions as regards the number of reaction steps, the rate, the temperature ranges and yields in solid versus gaseous products of thermal decomposition.The effect of inert/oxidative conditions on the chemical composition of the gaseous products of pyrolysis is discussed in a companion paper [O. Senneca, S. Ciaravolo, A. Nunziata, J. Anal. Appl. Pyrol. 78 (2007) 452].  相似文献   

2.
Pyrolysis of tobacco, a complex biomass matrix, was investigated to further understand thermal decomposition processes that are accompanied by evaporation of relatively stable non-polymeric endogenous compounds. Pyrolysis of two types of tobacco, bright and burley were studied using thermo-gravimetry mass spectrometry (TG–MS) and field ionization mass spectrometry (FIMS) analyses. Tobacco contains biopolymers and many non-polymeric compounds. Unlike many biomass pyrolysis tars derived from wood or cellulose, tobacco pyrolysis tars can contain significant amounts of high molecular weight endogenous constituents such as waxes and terpenes that are transferred intact. The phenomenon of evaporation of high molecular weight non-polymeric compounds is illustrated by tobacco micro-sample pyrolysis in FIMS under vacuum (at a pressure of 10−4 Torr). These experiments indicate that the evaporation of relatively stable high molecular weight species occurs below about 220 °C generating 300 Da and higher molecular weight products; and, decomposition of tobacco biopolymers such as starch, cellulose, hemicellulose, lignin, and pectin occurs mostly at temperatures higher than 220 °C producing species mostly with molecular weight below 300 Da. Some of the high molecular weight compounds, such as stigmasterol (412 Da), α-tocopherol (430 Da), and solanesol (630 Da), were tentatively identified using the FIMS spectra.  相似文献   

3.
The kinetics of the gas phase pyrolysis of dimethyl sulfide (DMS) was studied in a static system at 681–723 K by monitoring total pressure-time behavior. Analysis showed the pressure increase to follow DMS loss. The reaction follows two concurrent paths: with a slow, minor, secondary reaction: In a seasoned reactor the reaction follows a 3/2 order rate law with rate coefficient given by with θ = 2.303 RT in kcal/mol. A free radical mechanism is proposed to account for the data and a theoretical rate coefficient is derived from independent data: which agrees well with the experimental one over the range studied. The reaction is initiated by Me2S → Me + MeS? and propagated by metathetical radical attack on Me2S. C2H4 is formed by an isomerization reaction which may in part be due to a hot radical: Thermochemical data are listed, many from estimations, for both molecular and radical species of interest in the present system.  相似文献   

4.
竹材非等温热解动力学   总被引:1,自引:0,他引:1  
利用热重分析技术对竹材在高纯N2条件下,从室温至1273K进行了非等温热解分析,研究了升温速率(5、10、20和40K/min)对热解过程的影响,探讨了其热解机理。研究表明,竹材非等温热解过程主要分为失水干燥、快速热解和缓慢分解三个阶段组成,其中第二阶段是整个过程的主要阶段,析出大量挥发分造成明显失重。升温速率对热解过程有显著影响,随着升温速率的增加,最大热解速度增大,对应的峰值温度升高,热滞后现象加重,热解各阶段向高温侧移动。热解机理满足一维扩散Parabolic法则,反应机理函数为g(α)=α2。不同升温速率下活化能为75.32-82.99kJ.mol-1,指前因子为1.17×105-1.12×106min-1。  相似文献   

5.
The rate of gas formation from wood pyrolysis has been experimentally measured at temperatures from 300°C to 1000°C. The formation rate of specific product gases has been measured rather than the rate of solid weight loss. Even for very fine particles, the rate becomes heat transfer limited a: high temperatures. The product gases also approach thermodynamic equilibrium rapidly at high temperatures. The results are corrected using the experimental residence time distribution.  相似文献   

6.
Modeling pyrolysis behavior of waste plastic mixtures is of importance for design and operation of reactors which convert these waste plastics into valuable chemicals. However, because of limited understanding of their degradation behavior even for single component plastic wastes, modeling degradation kinetics of plastic mixtures is a challenging task.In this work, we report modeling of binary and ternary mixture degradation kinetics of polyethylene terephthalate (PET), low density polyethylene (LDPE) and polypropylene (PP). A simple mixing rule approach was used with one cross-kinetic degradation parameter per each binary. Ternary kinetics were completely predictive and showed good agreement with the experimental data.  相似文献   

7.
Data on the kinetics of S2F10 pyrolysis, which gives SF4 + SF6, have been reinterpreted to give a value for the equilibrium constant of S2F10 ? SF4 + SF6. This, together with statistical estimates of the entropy and heat capacity of S2F10, can be used to give for this reaction values of ΔH = 19.7 ± 1.0 kcal/mole and ΔS = 47.6 ± 2 gibbs/mole. ΔH(S2F10) = –494 kcal/mole. A compatible mechanism is shown to be S2F10 ? 2SF5 (fast); 2SF5 ? SF6 + SF4 (slow) with step 2 rate-determining. The overall, best first order rate constant is proposed as kmeas = 1017.42–43.0/θ sec?1 = K1k2, where θ = 2.303RT in kcal/mole. Independent measurements of δH and S° for the SF5 radical, permits the evaluation of the equilibrium constant K1 = 108.92–(27.1 ± 6)/θ l./mole-sec and yields k2 = 108.50–15.9/θ l./mole-sec. The observed homogeneous catalysis by NO and CHCl ? CHCl can be explained in terms of a direct abstraction of F from S2F10 : C + S2F10 → CF + S2F9, followed by S2F9 → SF5 + SF4 and SF5 + CF ? SF6 + C (C ? NO or C2H2Cl2).  相似文献   

8.
The gas phase elimination of 3-bromobutyronitrile, examined in a static system and seasoned vessel, follows a first-order rate law. The reaction in the temperature range of 370.0–420.1°C and pressure range of 54–198 torr, is homogeneous and unimolecular. The temperature dependence of the rate coefficient is given by the equation: log k1 (s–1)=(13.74±0.25)–(213.7±3.2) kJ mol–1 (2.303RT)–1. The cyano substituent has been found to retard the elimination process through its electronwithdrawing resonance effect. Most of the dehydrobromination product is cis-trans-crotonitrile, while very little of allyl cyanide is obtained. This result is rationalized in terms of electronic factors.
3- , . . 370,0–420,1°C 54–198 . : log k1 (cek–1)=(13,74±0,25)–(213,7±3,2)(/)×(2,303 RT)–1. - . --, . .
  相似文献   

9.
Slow pyrolysis of walnut shell which is a cheap and abundantly available solid waste was carried out using thermogravimetric analysis. The effects of raw material heating rate on the pyrolysis properties and kinetic parameters were investigated. A two-step consecutive reaction model were used to simulate the pyrolysis process. The kinetic parameters were established by using the pattern search method. Comparison between experimental data and the model prediction indicated that the two-step consecutive reaction model can better describe the slow pyrolysis of walnut shell as the formation of an intermediate during the pyrolysis process was taken into account.  相似文献   

10.
The pyrolysis of methyl 4-bromocrotonate in the temperature range 300–340°C and pressure range 74–170 torr has been shown to be homogeneous, unimolecular, and to follow a first-order rate law. The reaction was carried out in a static system, seasoned with allyl bromide, and in the presence of the radical chain exhibitor toluene. The rate coefficients are represented by the Arrhenius expression: log k1(s?1) = (13.30 ± 0.66) ? (185.2 ± 7.5) kJ mol?1 (2.303RT)?1. The carbomethoxy group appears to provide anchimeric assistance in the process of dehydrobromination and lactone products formation. The partial rates for the parallel reaction have been estimated, reported, and discussed. The pyrolysis elimination is explained in terms of an intimate ion pair-type of mechanism.  相似文献   

11.
The rates of pyrolysis of 4-chloro-2-butanone in the gas phase have been determined in a static system seasoned with the products of decomposition of allyl bromide. The reaction is catalyzed by hydrogen chloride. Under maximum catalysis of HCl, the kinetics were found to be of order 1.5 in the substrate suggesting that a complex elimination is involved. The reaction, when maximally inhibited with propene, appears to undergo a unimolecular elimination and follows a first-order law kinetics. The products are methylvinyl ketone and hydrogen chloride. The kinetics have been measured over the temperature range of 402.0–424.4°C.The rate coefficients are given by the Arrhenius equation \documentclass{article}\pagestyle{empty}\begin{document}$ \log k_1 (\sec ^{ - 1}) = (13.67 \pm 0.69) - (225.2 \pm 8.6)\,{\rm kj}/{\rm mol}/2.303RT\angle $\end{document}. Thepyrolysis of 4-chloro-2-butanone is 31 times greater in rate than that of ethyl chloride at 440°C. This large difference in rate may be attributed to the -M effect of the acetyl substituent in the pyrolysis of the former halo compound.  相似文献   

12.
Isothermal and non-isothermal pyrolysis kinetics of Kapton polyimide   总被引:1,自引:0,他引:1  
The kinetics involved in the thermal decomposition of Kapton® polyimide 100HN under nitrogen atmosphere were studied by applying various fitting techniques to the isothermal and non-isothermal gravimetric data. The correlation of the reaction mechanism fitting, the analytical model fitting and the isoconversional method to these data was examined in relation to the kinetic parameters and the kinetic predictions. The mechanisms for solid-state reactions fit the isothermal data very well but result in highly uncertain values for the kinetic parameters when applied to the non-isothermal data. Isoconversional methods show that the apparent activation energy depends on the extent of conversion but do not provide information for the reaction order and the pre-exponential factor. Three single heating-rate analytical models by Coats-Redfern, MacCallum-Tanner and van Krevelen were analysed using the non-isothermal data. A multi-heating rate model is proposed and its validity is compared to the single-heating rate models on the basis of kinetic predictions.  相似文献   

13.
Eight kinds of Radix Codonopsis (RC) from different origins in China were selected as the experimental samples fort his study. Their pyrolysis processes were researched by the method of thermogravimetry analysis, in which the heating course was set in the ways of programming temperature from room temperature to 500 °C at different heating rates. Research results show that the process in the heating period of RC includes three stages: water loss, fast pyrolysis, and medium rate decomposition. For cultivated RC, the average initial decomposition temperature in the fast pyrolysis stage is 115 °C, whereas the peak temperature of the fast pyrolysis stage is changed from 189 to 225 °C, in which stage the alcohol-soluble substances are mainly decomposed. It is required to control the operational temperatures of drying and concocting processes according to initial decomposition temperature. Kissinger–Akahira–Sunose model can be used to describe the process mechanism of RC pyrolysis, and the kinetic analyses based on the fast pyrolysis stage thermogravimetric data show that the activation energies change from 141 to 207 kJ mol?1 for cultivated RC samples and 122 to 131 kJ mol?1for wild RC samples. The alcohol-soluble extract (ASE) content of wild RC samples is lower than that of cultivated RC samples; their thermal stability is also relatively poor.  相似文献   

14.
The gas-phase pyrolysis of 3-chloroquadricyclane [1] was investigated over the temperature range 513–550 K at one atm in helium. The initial pyrolysis step is the isomerization of 3-chloroquadricyclane to 7-chloronorbornadiene (Ea=39.63±1.40 kcal/mole, log A=15.18±0.58). 7-chloronorbornadiene rearranges (623–660 K) to exclusively produce benzyl chloride (Ea=48.05±1.10 kcal/mole, log A=15.82±0.38). This two step mechanism affords fewer reactions than the unsubstituted quadricyclane system in the gas phase. The production of a benzene derivative from the chlorinated norbornadiene is a reaction pathway contained in the unsubstituted norbornadiene and other 7-substituted pyrolysis mechanisms. © 1997 John Wiley & Sons, Inc.  相似文献   

15.
The gas-phase pyrolysis of 3-t-butoxyquadricyclane [1] was investigated over the temperature range 511–542 K at one atm in helium. The initial pyrolysis step is the isomerization of 3-t-butoxyquadricyclane to 7-t-butoxynorbornadiene (Ea = 38.49 ± 0.85 kcal/mole, log A = 15.44 ± 0.35). 7-t-butoxynorbornadiene exhibits a single unimolecular reaction pathway which produces a mixture of t-butoxycycloheptatrienes (Ea = 38.44 ± 0.63 kcal/mole, log A = 15.05 ± 0.26). This two-step mechanism affords fewer reactions than unsubstituted quadricyclane in the gas phase and could be useful for its reduced sooting potential. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
17.
A great need exists for comprehensive biomass-pyrolysis models that could predict yields and evolution patterns of selected volatile products as a function of feedstock characteristics and process conditions. Low heating rate data obtained from a thermogravimetric analyzer (TGA), coupled with Fourier transform infrared analysis of evolving products (TG-FTIR), were used to perform kinetic analysis of tobacco pyrolysis. The results were utilized to create input to a biomass-pyrolysis model based on first-order kinetic expressions with a Gaussian distribution of activation energies. Pyrolysis simulations were carried out for high heating rate conditions, and predicted product yields were compared with literature data.  相似文献   

18.
The thermal pyrolysis of carboxymethyl hydroxypropyl sesbania gum and hydroxypropyl sesbania gum in air and nitrogen atmospheres were studied in order to establish the thermal stability of carboxymethyl hydroxypropyl sesbania gum. The results indicate that the stability of carboxymethyl hydroxypropyl sesbania gum against pyrolysis is higher than that of hydroxypropyl sesbania gum. The main state of carboxymethyl hydroxypropyl sesbania gum and hydroxypropyl sesbania gum can be assigned as random noncrystalline.We express our thanks to Dr. Yaxiong Xie for his help in this work.  相似文献   

19.
The kinetics of decomposition of azetidine {(CH2)3N(SINGLEBOND)H)} was measured using single-pulse shock-tube techniques, over the temperature range 855–1100 K, in high argon dilution. These data confirm and extend an earlier investigation that utilized the very low-pressure pyrolysis method. A brief survey of many reports regarding the interesting features of azetidine is presented. In two appendices the thermodynamic and kinetic data on trimethylene sulfide, oxide, and immine are intercompared. New ab-initio calculations are cited for the parent species and their fragmentation products. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 185–191, 1998.  相似文献   

20.
The kinetics of the gas phase pyrolysis of methyl 3-bromopropionate, under maximum catalysis of HBr, were found to be of order 1.0. The reaction appears to undergo a molecular elimination of HBr, which follows first-order kinetics. The products are methyl acrylate and HBr. The pyrolysis, in s static system and seasoned vessel, was examined over the temperature range of 330.5–378.5°C and pressure range of 64–145 Torr. The rate coefficients, under maximum catalysis, are given by the Arrhenius equation log k1(s–1)=(11.19±0.64)–(171.6±7.7) kJ/mol/2.303 RT. The mechanism of the catalyzed pyrolysis of the bromoester appears to proceed through a six-membered cyclic transition state.
3- HBr- , 1,0. HBr . HBr. 330,55–378, 5°C 64–145 . : log k1 (cek–1)=(11,9±0,64)–(171,6±7,7) //2,303 RT.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号