首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study was performed regarding the effect of the relation between fill time, volume treated per cycle, and influent concentration at different applied organic loadings on the stability and efficiency of an anaerobic sequencing batch reactor containing immobilized biomass on polyurethane foam with recirculation of the liquid phase (AnSBBR) applied to the treatment of wastewater from a personal care industry. Total cycle length of the reactor was 8 h (480 min). Fill times were 10 min in the batch operation, 4 h in the fed-batch operation, and a 10-min batch followed by a 4-h fed batch in the mixed operation. Settling time was not necessary since the biomass was immobilized and decant time was 10 min. Volume of liquid medium in the reactor was 2.5 L, whereas volume treated per cycle ranged from 0.88 to 2.5 L in accordance with fill time. Influent concentration varied from 300 to 1,425 mg COD/L, resulting in an applied volumetric organic load of 0.9 and 1.5 g COD/L.d. Recirculation flow rate was 20 L/h, and the reactor was maintained at 30 °C. Values of organic matter removal efficiency of filtered effluent samples were below 71% in the batch operations and above 74% in the operations of fed batch followed by batch. Feeding wastewater during part of the operational cycle was beneficial to the system, as it resulted in indirect control over the conversion of substrate into intermediates that would negatively interfere with the biochemical reactions regarding the degradation of organic matter. As a result, the average substrate consumption increased, leading to higher organic removal efficiencies in the fed-batch operations.  相似文献   

2.
Efforts were made to assess the efficiency of an anaerobic filter packed with porous floating ceramic media and to identify the optimum operational condition of anaerobic filter as a pretreatment of swine wastewater for the subsequent biological removal of nitrogen and phosphorus. A stepwise decrease in hydraulic retention time (HRT) and an increase in organic loading rate (OLR) were utilized in an anaerobic filter reactor at mesophilic temperature (35°C). The optimum operating condition of the anaerobic filter was found to be at an HRT of 1 d. A soluble chemical oxygen demand (COD) removal efficiency of 62% and a total suspended solids removal efficiency of 39% at an HRT of 1 d were achieved with an OLR of 16.0 kg total COD/(m3·d), respectively. The maximum methane production rate approached 1.70 vol of biogas produced per volume of reactor per day at an HRT of 1 d. It was likely that the effluent COD/total Kjeldahl nitrogen ratio, of 22, the COD/total phosphorous ratio of 47, and the high effluent alkalinity >2500 mg/L as CaCO3 of the anaerobic filter operated at an HRT of 1 d was adequate for the subsequent biological removal of nitrogen and phosphorus.  相似文献   

3.
Colour and COD removals of the azo dyes Congo Red (CR) and Reactive Black 5 (RB5) were individually evaluated in a sequential anaerobic/aerobic treatment system. Additionally, dye toxicity was assessed by using acute ecotoxicity tests with Daphnia magna as the indicator-organism. The anaerobic reactor was operated at approximately 27 °C and with hydraulic retention times of 12 and 24 h. The aerobic reactor was operated in batch mode with a total cycle of 24 h. During anaerobic step, high colour removals were obtained, 96.3% for CR (400 mg/L) and 75% for RB5 (200 mg/L). During the aerobic phase, COD effluent was considerably reduced, with an average removal efficiency of 52% for CR and 85% for RB5, which resulted in an overall COD removal of 88% for both dyes. Ecotoxicity tests with CR revealed that the anaerobic effluent presented a higher toxicity compared with the influent, and an aerobic post-treatment was not efficient in reducing toxicity. However, the results with RB5 showed that both anaerobic and aerobic steps could decrease dye toxicity, especially the aerobic phase, which removed completely the toxicity in D. magna. Therefore, the anaerobic/aerobic treatment is not always effective in detoxifying dye-containing wastewaters, sometimes even increasing dye toxicity.  相似文献   

4.
A mechanically stirred anaerobic sequencing batch reactor containing anaerobic biomass immobilized on polyurethane foam cubes, treating low-strength synthetic wastewater (500 mg COD L?1), was operated under different operational conditions to assess the removal of organic matter and sulfate. These conditions were related to fill time, defined by the following feed strategies: batch mode of 10 min, fed-batch mode of 3 h and fed-batch mode of 6 h, and COD/[SO4 2?] ratios of 1.34, 0.67, and 0.34 defined by organic matter concentration of 500 mg COD L?1 and sulfate concentrations of 373, 746, and 1,493 mg SO4 2? L?1 in the influent. Thus, nine assays were performed to investigate the influence of each of these parameters, as well as the interaction effect, on the performance of the system. The reactor operated with agitation of 400 rpm, total volume of 4.0 L, and treated 2.0 L synthetic wastewater in 8-h cycles at 30?±?1°C. During all assays, the reactor showed operational stability in relation to the monitored variables such as COD, sulfate, sulfide, sulfite, volatile acids, bicarbonate alkalinity, and solids, thus demonstrating the potential to apply this technology to the combined removal of organic matter and sulfate. In general, the results showed that the 3-h fed-batch operation with a COD/[SO4 2?] ratio of 0.34 presented the best conditions for organic matter removal (89%). The best efficiency for sulfate removal (71%) was accomplished during the assay with a COD/[SO4 2?] ratio of 1.34 and a fill time of 6 h. It was also observed that as fill time and sulfate concentration in the influent increased, the ratio between removed sulfate load and removed organic load also increased. However, it should be pointed out that the aim of this study was not to optimize the removal of organic matter and sulfate, but rather to analyze the behavior of the reactor during the different feed strategies and applied COD/[SO4 2?] ratios, and mainly to analyze the interaction effect, an aspect that has not yet been explored in the literature for batch reactors.  相似文献   

5.
The objective of this study was to evaluate the performance of a photocatalysis/H2O2/metal membrane hybrid system in the degradation of humic acid. A metal membrane of nominal pore size 0.5 μm was used in the experiment for separation of TiO2 particles. Hydrogen peroxide was tested as an oxidant. The efficiency of removal of CODCr and color increased rapidly for initial hydrogen peroxide concentrations up to 50 mg L−1. The efficiency of removal of CODCr and color by 50 mg L−1 initial hydrogen peroxide concentration was approximately 95 and 98%, respectively. However, addition of hydrogen peroxide over 50 mg L−1 inhibited the efficiency of the system. Addition of hydrogen peroxide to a UV/TiO2 system enhanced efficiency of removal of CODCr and color compared with no addition of hydrogen peroxide. This may be ascribed to capture electrons ejected from TiO2 and to the production of OH radicals. Application of the metal membrane in the UV/TiO2/H2O2 system enhanced the efficiency of removal of CODCr and color because of adsorption by the metal membrane surface and the production of OH radicals. By application of a metal membrane with a nominal pore size of 0.5 μm, TiO2 particles were effectively separated from the treated water by metal membrane rejection. The photocatalytic metal membrane had much less resistance than the humic acid, TiO2, and humic acid/TiO2 because of the degradation of humic acid by the photocatalytic reaction.  相似文献   

6.
A modular internal micro-electrolysis Fenton reactor (MIME-Fenton) was specifically designed in order to facilitate the performance of internal micro-electrolysis (IME) technology in the treatment of mature landfill leachate. Excellent COD removal efficiency of 90.9 % by the new reactor of mature landfill leachate was observed in bench-scale treatment, which is 193–399, 415–551, and 226–457 % higher than that of conventional treatments of electrolysis, coagulation–sedimentation, and Fenton, respectively. The innovative concept behind the excellent performance is the novel two-step treatment, similar to the anaerobic–aerobic activated sludge method. It is based on a combination effect of reductive IME and oxidative IME with aeration processes and the integration of electro-aggregation and electro-coagulation. Initial pH and air flow rate were optimized, and the effect of auxiliary in situ regeneration of ferrous iron and generation of H2O2 was further investigated. The reactor was also particularly efficient in removal of color and HA, and in improvement of the BOD5/COD ratio. All these results show that the MIME-Fenton reactor, a new approach of IME, is promising for mature landfill leachate treatment because it is efficient and easy to operate.  相似文献   

7.
The aim of this work was to investigate the effect of different feeding times (2, 4, and 6 h) and organic loading rates (3, 6 and 12 gCOD l−1 day−1) on the performance of an anaerobic sequencing batch reactor containing immobilized biomass, as well as to verify the minimum amount of alkalinity that can be added to the influent. The reactor, in which mixing was achieved by recirculation of the liquid phase, was maintained at 30 ± 1°C, possessed 2.5 l reactional volume and treated 1.5 l cheese whey in 8-h cycles. Results showed that the effect of feeding time on reactor performance was more pronounced at higher values of organic loading rates (OLR). During operation at an OLR of 3 gCOD l−1 day−1, change in feeding time did not affect efficiency of organic matter removal from the reactor. At an OLR of 6 gCOD l−1 day−1, reactor efficiency improved in relation to the lower loading rate and tended to drop at longer feeding times. At an OLR of 12 gCOD l−1 day−1 the reactor showed to depend more on feeding time; higher feeding times resulted in a decrease in reactor efficiency. Under all conditions shock loads of 24 gCOD l−1 day−1 caused an increase in acids concentration in the effluent. However, despite this increase, the reactor regained stability readily and alkalinity supplied to the influent showed to be sufficient to maintain pH close to neutral during operation. Regardless of applied OLR, operation with feeding time of 2 h was which provided improved stability and rendered the process less susceptible to shock loads.  相似文献   

8.
UV/titanium dioxide (TiO2) degradation of two xanthene dyes, erythrosine B (Ery) and eosin Y (Eos), was studied in a photocatalytic reactor. Photocatalysis was able to degrade 98% of Ery and 73% of Eos and led to 65% of chemical oxygen demand removal. Experiments in buffered solutions at different initial pH values reveal the pH dependence of the process, with better results obtained under acidic conditions due to the electrostatic attraction caused by the opposite charges of TiO2 (positive) and of anionic dyes (negative). Batch activity tests under methanogenic conditions showed the high toxicity exerted by the dyes even at low concentrations (~85% with initial concentration of 0.3 mmol L?1), but the end products of photocatalytic treatment were much less toxic toward methanogenic bacteria, as detoxification of 85 ± 5% for Eos and 64 ± 7% for Ery were obtained. In contrast, the dyes had no inhibitory effect on the biogenic‐carbon biodegradation activity of aerobic biomass, obtained by respirometry. The results demonstrate that photocatalysis combining UV/TiO2 as a pretreatment followed by an anaerobic biological process may be promising for the treatment of wastewaters produced by many industries.  相似文献   

9.
《Comptes Rendus Chimie》2015,18(1):110-120
Studies on the removal of methylene blue (MB) from aqueous solutions by anodic oxidation (AO) using a boron-doped diamond (BDD) electrode, adsorption onto sawdust, and combined treatment have been undertaken. The results proved that AO presents a high efficiency in removing both color and COD in a wide pH interval. The total mineralization of the dye solution was performed in 6 h, which corresponds to relatively high-energy consumption. On the other hand, high sawdust dosage (12 g·L−1) was needed to ensure 98% of color and 81% of COD removal. Combining AO and adsorption onto sawdust constitute a very interesting technology. For instance, AO for 1 h followed by sorption permits a reduction in energy consumption by 80 W·h·gCOD−1, a reduction of more than 24 times the adsorbent dose and an enhancement of color and COD removal, indicating that sawdust is efficient in removing not only the MB initial molecules but also the electrogenerated by-products.  相似文献   

10.
The effect of temperature on the performance of an anaerobic sequencing biofilm batch reactor (ASBBR) with liquid-phase recirculation was assessed. Assays were performed using a recirculation velocity of 0.20 cm/s, 8-h cycles, and an average treated synthetic wastewater volume of 2 L/cycle with a concentration of 500 mg of Chemical Oxygen Demand (COD)/L. Operation temperatures were 15, 20, 25, 30, and 35°C. At 25, 30, and 35°C, organic matter removal efficiencies for filtered samples ranged from 81 to 83%. At lower temperatures, namely 15 and 20°C, removal efficiency decreased significantly to 61 and 65%, respectively. A first-order model could be fitted to the experimental concentration profile values. The first-order kinetic parameter value of this model varied from 0.46 to 0.81 h1 considering the lowest and highest temperature studied. Moreover, analysis of the removal profile values allowed fitting of an Arrhenius-type equation with an activation energy of 5715 cal/mol.  相似文献   

11.
The anaerobic treatment of raw vinasse in a combined system consisting in two methanogenic reactors, up-flow anaerobic sludge blanket (UASB) + anaerobic packed bed reactors (APBR), was evaluated. The organic loading rate (OLR) was varied, and the best condition for the combined system was 12.5 kg COD m?3day?1 with averages of 0.289 m3 CH4 kg COD r?1for the UASB reactor and 4.4 kg COD m?3day?1 with 0.207 m3 CH4 kg COD r?1 for APBR. The OLR played a major role in the emission of H2S conducting to relatively stable quality of biogas emitted from the APBR, with H2S concentrations <10 mg L?1. The importance of the sulphate to COD ratio was demonstrated as a result of the low biogas quality recorded at the lowest ratio. It was possible to develop a proper anaerobic digestion of raw vinasse through the combined system with COD removal efficiency of 86.7% and higher CH4 and a lower H2S content in biogas.  相似文献   

12.
The photocatalytic oxidation of diclofenac, metoprolol, estrone and chloramphenicol was tested in the tube reactor using different commercially available TiO2. The photocatalysts were characterized using BET, XRD and SEM. The studied photocatalysts differed in SBET, pore volume and rutile presence. It was observed that generally anatase TiO2 possessed the highest activity in the photocatalytic oxidation of diclofenac, chloramphenicol and estrone. The presence of rutile enhanced the photooxidation of metoprolol. In case of the other pollutants, however, rutile diminished the photooxidation efficiency. The most effective in the reduction of the COD parameter of treated water was anatase with 21 nm crystals. The photooxidation of all studied pollutants can be described by the pseudo-first order kinetics with the values ranging from 0.46 × 10?2 min?1 in case of estrone removal over Tytanpol (Z.A. Police, Poland) to 1.87 × 10?2 min?1 for the removal of chloramphenicol over TiO2 21 nm (Sigma-Aldrich). The highest initial reaction rates were obtained for metoprolol removal over TiO2 21 nm (Sigma-Aldrich) 1.9 × 10?6 mol dm3 min?1 being three times higher than that determined for estrone photocatalytic oxidation over TiO2 (Sigma-Aldrich).  相似文献   

13.
厌氧悬浮填料生物膜反应器处理费托合成废水   总被引:4,自引:0,他引:4  
采用厌氧悬浮填料生物膜反应器工艺对费托合成废水进行处理,考察了高有机负荷条件下系统的运行情况.有机负荷小于31.1g/(L·d)时,COD去除率达97%以上;当有机负荷从39.7g/(L·d)增加至56.3g/(L·d)时,厌氧反应对COD的去除率从88%降至6l%.实验结果表明,填料生物膜比悬浮污泥具有更高的活性,M...  相似文献   

14.
The removal of chemical oxygen demand (COD) and color from simulated dye wastewater containing organic dyes, direct yellow 4, C26H20N4O8S2Na2 and acid yellow 17, C16H10O7N4S2Cl2Na2 experimentally investigated using an electrochemical undivided cell reactor with Pt as anode and steel as cathode. Particular attention was paid to probe the effect of supporting electrolyte (NH4Cl), cell voltage, pH, and treatment time on the electrochemical treatment efficiency. Experiments were also carried out using 0.2?M NH4Cl as supporting electrolyte under the condition of free pH. The experimental results showed that the process could efficiently remove the color and COD from simulated dye waste water. The overall COD removal reached at 69.9% by using supporting electrolyte and increasing voltage. The process can be described by pseudo first-order kinetics for the removal of COD.  相似文献   

15.
Dark anaerobic fermentation is an interesting alternative method for producing biohydrogen (H2) as a renewable fuel because of its low cost and various usable organic substrates. Pulping sludge from wastewater treatment containing plentiful cellulosic substrate could be feasibly utilized for H2 production by dark fermentation. The objective of this study was to investigate the optimal proportion of pulping sludge to paper waste, the optimal initial pH, and the optimal ratio of carbon and nitrogen (C/N) for H2 production by anaerobic seed sludge pretreated with heat. The pulping sludge was pretreated with NaOH solution at high temperature and further hydrolyzed with crude cellulase. Pretreatment of the pulping sludge with 3% NaOH solution under autoclave at 121 °C for 2 h, hydrolysis with 5 FPU crude cellulase at 50 °C, and pH 4.8 for 24 h provided the highest reducing sugar production yield (229.68 ± 2.09 mg/gTVS). An initial pH of 6 and a C/N ratio of 40 were optimal conditions for H2 production. Moreover, the supplement of paper waste in the pulping sludge enhanced the cumulative H2 production yield. The continuous hydrogen production was further conducted in a glass reactor with nylon pieces as supporting media and the maximum hydrogen production yield was 151.70 ml/gTVS.  相似文献   

16.
An investigation was performed regarding the application of a mechanically stirred anaerobic sequencing batch biofilm reactor containing immobilized biomass on inert polyurethane foam (AnSBBR) to the treatment of soluble metalworking fluids to remove organic matter and produce methane. The effect of increasing organic matter and reactor fill time, as well as shock load, on reactor stability and efficiency have been analyzed. The 5-L AnSBBR was operated at 30?°C in 8-h cycles, agitation of 400 rpm, and treated 2.0 L effluent per cycle. Organic matter was increased by increasing the influent concentration (500, 1,000, 2,000, and 3,000 mg chemical oxygen demand (COD)/L). Fill times investigated were in the batch mode (fill time 10 min) and fed-batch followed by batch (fill time 4 h). In the batch mode, organic matter removal efficiencies were 87%, 86%, and 80% for influent concentrations of 500, 1,000, and 2,000 mgCOD/L (1.50, 3.12, and 6.08 gCOD/L.d), respectively. At 3,000 mgCOD/L (9.38 gCOD/L.d), operational stability could not be achieved. The reactor managed to maintain stability when a shock load twice as high the feed concentration was applied, evidencing the robustness of the reactor to potential concentration variations in the wastewater being treated. Increasing the fill time to 4 h did not improve removal efficiency, which was 72% for 2,000 mgCOD/L. Thus, gradual feeding did not improve organic matter removal. The concentration of methane formed at 6.08 gCOD/L was 5.20 mmolCH4, which corresponded to 78% of the biogas composition. The behavior of the reactor during batch and fed-batch feeding could be explained by a kinetic model that considers organic matter consumption, production, and consumption of total volatile acids and methane production.  相似文献   

17.
Textile and dye industries are main sources of dye bearing effluent. In present studies the anaerobic biological degradation of Acid Red 3BN dye water (AR3BNDW) and mixed dye water (MDW) for reduction of color and COD were studied in sequential batch reactor (SBR). The sludge as sources of microorganism was arranged from maize processing bio methanation wastewater treatment plant, which was acclimatized for treatment of AR3BNDW and MDW. After the acclimatization, dyes degradation were studied in SBR At optimum operation condition of hydraulics retention time (HRT) = 2.5 d, and treatment time (tR) = 16 h, AR3BNDW have gone maximum 87% color reduction of 500 mg/L dye, and 82.8% COD reduction of 380 mg/L COD. At same operating condition, 84.5% color reduction of 500 mg/L dye, and 79.42% COD reduction of 413 mg/L COD achieved for MDW. The second order Grau model was fitted well for COD and dye reductions. The kinetics parameter were evaluated for both the dye water.  相似文献   

18.
A new immobilized photocatalytic impinging jet stream reactor was designed, and the influences of the effective parameters like jet flow rate, TiO2 coating disc diameter, nozzle-to-disc distance, and initial concentration on phenol removal were investigated. The reactor was also used as a slurry reactor, and degradation efficiencies in both reactors were compared based on their catalyst loading. The results indicated that the slurry reactor has a higher degradation efficiency than the immobilized reactor at the same TiO2 loading and other operational conditions. The slurry reactor needs to separate and recover the TiO2 nanoparticles from the reaction medium which increases the overall process complexity and cost, while the immobilized reactor could be reused at least 4times without any significant decrease in removal efficiency. RTD result indicates that the tank in series model (N?=?5) could properly predict the reactors hydrodynamic behavior.  相似文献   

19.
This study investigates the treatment of cutting oil wastewater from the automotive parts manufacturing industry to promote sustainability via the use of ‘used shot blasts’, which are the by-products of auto parts production. Used shot blasts are rich iron sources of Fe0, which becomes an effective catalyst in the Fenton reaction. A modified air-Fenton (MAF) system was proposed to generate hydroxyl radicals that eliminated recalcitrant organics in cutting oil wastewater. First, the Taguchi method, comprising the L18 orthogonal array design, was used to identify significant operation factors, including the size and amount of used shot blasts, initial pH, reaction time, mixing speed, initial cutting oil concentration, and air flow rate. Then, a central composite rotatable design coupled with response surface methodology (RSM) was used to determine the optimal conditions and model the influencing variables. The results provided three crucial variables for the cutting oil wastewater treatment through use of the MAF system: initial pH, the amount of used shot blasts, and initial cutting oil concentration. RSM was applied to reveal the optimum operating conditions, achieving a maximum removal efficiency of 92.82% for chemical oxygen demand (COD), 80.18% for total organic carbon (TOC), and 99.55% for turbidity within 45 min of operating the MAF system. The model agreed well with the experimental data, with coefficient of determination values of 0.9819, 0.9654, and 0.9715 for COD, TOC, and turbidity removal efficiency, respectively. Pseudo-second-order reaction kinetics fitted well for COD removal, with a rate constant of 0.0218 min?1 and hydrogen peroxide generation of 0.0169 M. Overall, the proposed MAF system was efficient and had a low operating cost (0.67 USD/m3).  相似文献   

20.
Titania thin films were synthesized by sol–gel dip-coating method with metallic Ni nanoparticles synthesized separately from an organometallic precursor Ni(COD)2 (COD = cycloocta-1,5-diene) in presence of 1,3-diaminopropane as a stabilizer. Titania was obtained from a titanium isopropoxide precursor solution in presence of acetic acid. A Ni/TiO2 sol system was used to coat glass substrate spheres (6, 4 and 3 mm diameter sizes), and further heat treatment at 400 °C was carried out to promote the crystallization of titania. XRD analysis of the TiO2 films revealed the crystallization of the anatase phase. Transmission Electron Microscopy (TEM) and High Resolution TEM studies of Ni nanoparticles before mixing with the TiO2 solution revealed the formation of Ni nanostructures with an average size of 5–10 nm. High-angle annular dark-field images of the Ni/TiO2 system revealed well-dispersed Ni nanoparticles supported on TiO2 and confirmed by AFM analysis. The photocatalytic activity of the Ni/TiO2 films was evaluated in hydrogen evolution from the decomposition of ethanol using a mercury lamp for UV light irradiation. Titania films in presence of Ni nanoparticles show higher efficiency in their photocatalytic properties in comparison with TiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号