首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
房丽敏 《物理学报》2011,60(5):56801-056801
采用基于密度泛函理论的第一性原理平面波赝势方法研究了SrTiO3(001)表面上Au和N原子间相互作用的微观机理.通过比较分析N置换表面层O原子前后SrTiO3(001)表面吸附Au原子体系的相关能量和电子结构,发现SrTiO3(001)表面吸附Au原子和N替代表面层O原子的置换过程二者之间存在明显的"协同效应",即N原子置换SrTiO3(001)表面层O原子的过程增强了相应表面吸附Au原子的稳定性,而SrTiO关键词: 表面结构 相互作用 第一性原理  相似文献   

2.
3.
Abstract

We have used the molecular dynamics (MD) technique using many-body interaction potentials to analyse in detail the processes leading to sputter emission, in order to gain a microscopic understanding of low energy bombardment phenomena. Calculations were performed for a Cu (111) single crystal surface bombarded with Ar atoms in the energy range from 10–1000 eV. The results presented for low bombarding energies are mainly concerned with the near sputtering threshold behaviour, yields and depth of origin of sputtered atoms. Furthermore, it is found, that in addition to sputtered atoms, a large number of ad-atoms at the surface are generated during the evolution of the collision cascade. At higher energies the question of cluster emission and especially their energy distribution and angular distribution are addressed. It was found that the energy distributions for the dimers and monomer atoms exhibit a similar dependence on emission energy as has been observed recently also experimentally. For atoms good agreement with the theoretical Sigmund-Thompson energy distribution was observed. However, for dimers we found that the energy distributions exhibit an asymptotic behaviour at high energies with E?3 rather than with E?5, as predicted in previous modelling of cluster emission. Concerning the angular distributions six emission spots, three strong ones in the <110> and three weak ones in the <100> direction were found for atoms, but for dimers only emission spots in the <110> direction were observed, in agreement with experimental results.  相似文献   

4.
Atom-resolved images of a TiO2(110)-(1×1) surface and individual formate and acetate ions adsorbed on the surface were obtained by noncontact atomic force microscopy (NC-AFM) in ultrahigh vacuum. In contrast to previous scanning tunneling microscopic studies imaging five-fold coordinated Ti atoms, outermost atoms of bridge-bound oxygen ridges of the surface were resolved as protruding rows by NC-AFM. High-resolution image of the surface revealed that the bridging oxygen atoms on terraces ordered in a (1×1) periodicity. Randomly distributed point and multiple defects of oxygen atoms were also imaged as dark spots. The (2×1) overlayer of formate and acetate ions were resolved as ordered bright spots. Dispersed formate ions at a low coverage were also observed as bright spots between the bridging oxygen ridges along the [001] direction.  相似文献   

5.
The theory presented explains quantitatively the experimentally observed increase in film density of a vapor-deposited CeO2 film when bombarded during growth with low-energy O 2 + ions. The density enhancement is expressed in terms of the yields for recoil implantation of surface atoms, ion incorporation and sputtering, which have been determined by employing a three-dimensional Monte Carlo cascade calculation. Ion-to-vapor flux ratios between 0 and 1.4 and O+ ion energies between 25 and 600 eV have been examined. The density shows an almost linear increase with the ratio of ion-to-vapor fluxes. An optimum O+ ion energy for densification is found at about 200 eV which is in agreement with experiment.  相似文献   

6.
Surface flashover phenomena under high electric field are closely related to the surface characteristics of a solid insulating material between energized electrodes. Based on measuring the surface potential decaying curve of polytetrafluoroethylene (PTFE) block charged by a needle-plane corona discharge, its surface trapping parameters are calculated with the isothermal current theory, and the correlative curve between the surface trap density and its energy level is obtained. The maximum density of electron traps and hole traps in the surface layer of PTFE presents a similar value of ∼2.7 × 1017 eV−1 m−3, and the energy level of its electron and hole traps is of about 0.85-1.0 eV and 0.80-0.90 eV, respectively. Via the X-ray photoelectron spectroscopy (XPS) technique, the F, C, K and O elements are detected on the surface of PTFE samples, and F shows a remarkable atom proportion of ∼73.3%, quite different from the intrinsic distribution corresponding to its chemical formula. The electron traps are attributed to quantities of F atoms existing on the surface of PTFE due to its molecular chain with C atoms surrounded by F atoms spirally. It is considered that the distortions of chemical and electronic structure on solid surface are responsible for the flashover phenomena occurring at a low applied voltage.  相似文献   

7.
The sputtering of tungsten from a target at a temperature of 1470 K during irradiation by 5-eV deuterium ions in a steady-state dense plasma is discovered. The literature values of the threshold for the sputtering of tungsten by deuterium ions are 160–200 eV. The tungsten sputtering coefficient measured by the loss of weight is found to be 1.5×10?4 atom/ion at a deuterium ion energy of 5 eV. Previously, such a sputtering coefficient was usually observed at energies of 250 eV. The sputtering is accompanied by a change in the target surface relief, i.e., by the etching of the grain boundaries and the formation of a wavy structure on the tungsten surface. The subthreshold sputtering at a high temperature is explained by the possible sputtering of adsorbed tungsten atoms that are released from the traps around the interstitial atoms and come to the target surface from the space between the grains. The wavy structure on the surface results from the merging of adsorbed atoms into ordered clusters.  相似文献   

8.
Molecular dynamics simulations (MD) of dynamical properties of molten binary Ag-Cu alloy is presented at various temperature above the eutetic temperature. Atoms in the system have been modelled through an interatomic Lennard-Jones potential interaction. The structure, through the effective pair distribution function allows to determine the Enksog collision frequency as well as the coordination of atoms in the first shell. The surface traction, which is the force per unit area between the species shows a long separation oscillation about the value zero, while the collision frequency of pairs of atoms increase with increasing temperature. The adhesion energy between components found to be 3.4178 J/m2. In agreement with theory, we found a decrease in surface tension of Ag-Cu alloy as temperature increases. Separation of atoms pairs in the first shell might be responsible for a non linear relationship found between temperature and coordination number in present calculations.  相似文献   

9.
The interactions of muonium (μ + e , Mu) with the surfaces of fine silica powders have been extensively studied using zero, longitudinal and transverse field μSR techniques. These studies indicate diffusion and trapping behavior of the Mu atoms on the silica surface, which is strongly influenced by the surface hydroxyl (OH) concentration. Specifically, the presence of the surface OH groups is observed to inhibit the surface mobility of the Mu atoms at low temperatures. Information provided by zero and longitudinal field data suggest a random anisotropic distortion of the Mu hyperfine interaction (RAHD) as the principal relaxation mechanism. A recently developed RAHD spin relaxation theory is used to interpret these data. Additional investigations, using platinum loaded silica, have yielded the first observed surface reaction of Mu. Studies of the interactions of positive muons with surfaces have been also extended to single crystals, where low energy (<10 eV)μ + andMu ions are observed to be reemitted from some materials (e.g., the <100> surface of lithium fluoride). Future applications of these emission phenomena toward the development of a slow847-3 (or Mu) beam are considered.  相似文献   

10.
The rutile (1 1 0)-aqueous solution interface structure was measured in deionized water (DIW) and 1 molal (m) RbCl + RbOH solution (pH 12) at 25 °C with the X-ray crystal truncation rod method. The rutile surface in both solutions consists of a stoichiometric (1 × 1) surface unit mesh with the surface terminated by bridging oxygen (BO) and terminal oxygen (TO) sites, with a mixture of water molecules and hydroxyl groups (OH) occupying the TO sites. An additional hydration layer is observed above the TO site, with three distinct water adsorption sites each having well-defined vertical and lateral locations. Rb+ specifically adsorbs at the tetradentate site between the TO and BO sites, replacing one of the adsorbed water molecules at the interface. There is no further ordered water structure observed above the hydration layer. Structural displacements of atoms at the oxide surface are sensitive to the solution composition. Ti atom displacements from their bulk lattice positions, as large as 0.05 Å at the rutile (1 1 0)-DIW interface, decay in magnitude into the crystal with significant relaxations that are observable down to the fourth Ti-layer below the surface. A systematic outward shift was observed for Ti atom locations below the BO rows, while a systematic inward displacement was found for Ti atoms below the TO rows. The Ti displacements were mostly reduced in contact with the RbCl solution at pH 12, with no statistically significant relaxations in the fourth layer Ti atoms. The distance between the surface 5-fold Ti atoms and the oxygen atoms of the TO site is 2.13 ± 0.03 Å in DIW and 2.05 ± 0.03 Å in the Rb+ solution, suggesting molecular adsorption of water at the TO site to the rutile (1 1 0) surface in DIW, while at pH 12, adsorption at the TO site is primarily in the form of an adsorbed hydroxyl group.  相似文献   

11.
Residual chlorines, which originate from HAuCl4, enhance the aggregation of gold (Au) nanoparticles and clusters, preventing the generation of highly active supported Au catalysts. However, the detailed mechanism of residual-chlorine-promoted aggregation of Au is unknown. Herein to investigate this mechanism, density functional theory (DFT) calculations of Au and Cl adsorption onto a reduced rutile TiO2 (110) surface were performed using a generalised gradient approximation Perdew, Burke, and Ernzerhof formula (GGA–PBE) functional and plane-wave basis. Although both Au and Cl atoms prefer to mono-absorb onto oxygen defect sites, Cl atoms have a stronger absorption onto a reduced TiO2 (110) surface, abbreviated as rTiO2 (110) in the following, than Au atoms. Additionally, co-adsorption of a Cl atom and a Au atom or Au nanorod onto a rTiO2 surface was investigated; Cl adsorption onto an oxygen defect site weakens the interaction between a Au atom or Au nanorod and rTiO2 (110) surface. The calculation results suggest that the depletion of interaction between Au and rTiO2 surface is due to strong interaction between Cl atoms at oxygen defect sites and neighbouring bridging oxygen (OB) atoms.  相似文献   

12.
ABSTRACT

Ab-initio molecular dynamics (AIMD) simulations have been carried out to study a range of different and energetically-accessible adsorbed-water configurations and motifs for their vibrational and structural characteristics, in contact with rutile-(110) interfaces at 100?K. The radial pair distribution function between the titanium atoms at the interface and the hydrogen and oxygen atoms in the water monolayer show an orientation of the water molecules parallel to the surface of titania, and with hydrogen atoms pointed in the opposite direction to the surface. In some cases, a distinctive vibrational frequency region between 2500 and 3000?cm?1 has also been observed, due to a strong dispersion interaction between water molecules. This behaviour is also seen in experimental studies of thin-film water coverage on TiO2 surfaces.  相似文献   

13.
14.
We present a microscopic theory and results of atom scattering calculations to determine the dispersion of surface modes (ripplons) of superfluid helium-4 nanodroplets, expanding previous work [J. Chem. Phys. 115, 10161 (2001)]. A quantum transport formalism is adapted to the many-body scattering problem, yielding both elastic and inelastic fluxes. We demonstrate that, in analogy to the dynamic structure function S(k,ω) obtained from neutron scattering, a dynamic structure function σ(k,ω) can be obtained from 3He scattering. The 3He dynamic structure function σ(k,ω) is sensitive to surface dynamics, whereas the neutron dynamic structure function S(k,ω) is dominated by bulk-like excitations, in particular by rotons. Unlike for neutron-scattering, the total inelastic cross section for atom-scattering on 4He nanodroplets is large which we believe makes experimental detection feasible. We also show that scattering identical particles, i.e. 4He atoms, does not provide information about the dispersion of surface modes. Instead, inelastically scattered 4He atoms preferably lose roughly half their energy.  相似文献   

15.
This paper proposes a new model of the ion sputtering process. According to this model: (1) Sputtering atoms or ions originate almost entirely from the surface layer. (2) Atoms initially leave the surface in the same charge state in which they exist in the crystal, and are largely neutralized in traversing a region near the surface. (3) Neutralization can be explained in terms of quantum mechanical electron transmission and reflection phenomena that occur when the atom is within about three lattice spacings from the surface. The model upon which the theory is based pictures a potential well at the metal surface caused by the electric field of the departing ion. This potential well completely cancels the effect of the potential barrier normally present at the surface of the undisturbed metal, and for certain distances of the ion from the surface, results in a very high probability of emission of an electron from the metal surface, which then immediately neutralizes the emitted ion. This high neutralization probability explains the very low (10?2 to 10?6) sputtered ion yields observed experimentally. The ion sputtering yields for a number of elements were computed and compared with values obtained experimentally. It is found that the theory gives results compatible with experiment, and also provides an, at least qualitative, explanation for some of the heretofore rather puzzling experimentally observed features of ion sputtering.  相似文献   

16.
The stabilization mechanism of the polar, copper terminated Cu2O(001) surface by means of complex surface reconstruction was studied theoretically with a combination of static and molecular dynamics calculations. The experimentally reported “3√2 × 1” surface structure was constructed and characterized for the first time. The combination of simulated annealing with molecular dynamics shows that Cu+–Cu+ dimers are formed in the first layer along the equivalent [011] and [01?1] directions at elevated temperature. There is a relaxation of the atoms that separates copper cations from nearest neighbor rows. Using the experimentally observed superstructure cell allows decoupling the symmetry equivalent dimers. The structural reconstructions were characterized by the electronic properties calculations. It is observed that the dimers are formed due to the d–d interaction of the copper atoms. Finally, the symmetry driven reconstructed structure was investigated by DFT STM. The simulated STM images show that copper atoms have higher density than oxygen atoms at the surface and produce the positive surface corrugation.  相似文献   

17.
We report on a 197Au Mössbauer study of several types of supported gold catalysts. Differences in particle size show up in the Mössbauer spectra by a change in the relative weight of the spectral contribution of the surface atoms. The presence of ionic gold in active gold catalysts is not observed. The spectra can be interpreted in terms of bulk-like contributions from the inner-core atoms plus contributions from the outermost atoms at the surface of the particles.  相似文献   

18.
A microscopic theory of desorption of neutral atoms from the surface of crystalline GaP is presented. Derived results suggest that bonds are broken at the surface due to high excitonic density, so that a pair of excited holes can get localised on the same bond because such an excited state has much lower energy than that of a free exciton state. Any bond with a pair of holes, instead of covalent electrons, will be broken. Strong exciton-lattice interaction is assumed. It is argued that the mechanism of atomic desorption from surfaces is analogous to that of polymer ablation; and the desorption of neutral atoms increases linearly to super linearly with the increase in laser fluence. This agrees well with experiments.  相似文献   

19.
During Ne+ bombardment of Al, 8 different spectral lines of Al I were observed. The intensities were found to depend on the presence of oxygen, the oxygen being in part adsorbed at the surface and in part recoil-implanted beneath the surface. A model is presented in which the oxygen dependence is related to resonance electron transfer between sputtered Al atoms and the target surface. The same model also accounts for the oxygen dependence of the yields of the secondary ions Al+, Al2+, and Al3+.  相似文献   

20.
We report on experiments on an evanescent-wave mirror for cold 87Rb atoms. Measurements of the bouncing fraction show the importance of the Van der Waals attraction to the surface. We have directly observed radiation pressure parallel to the surface, exerted on the atoms by the evanescent-wave mirror. We analyze the radiation pressure by imaging the motion of the atom cloud after the bounce. The number of photon recoils ranges from 2 to 31. This is independent of laser power, inversely proportional to the detuning and proportional to the evanescent-wave decay length. By operating the mirror on an open transition, we have also observed atoms that bounce inelastically due to a spontaneous Raman transition. The observed distributions consist of a dense peak at the minimum velocity and a long tail of faster atoms, showing that the transition is a stochastic process with a strong preference to occur near the turning point of the bounce.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号