首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Photosynthetically active radiation (PAR) and Ultraviolet B (UV‐B) radiation are among the main environmental factors acting on herbal yield and biosynthesis of bioactive compounds in medicinal plants. The objective of this study was to evaluate the influence of biologically effective UV‐B light (280–315 nm) and PAR (400–700 nm) on herbal yield, content and composition, as well as antioxidant capacity of essential oils and polyphenols of lemon catmint (Nepeta cataria L. f. citriodora), lemon balm (Melissa officinalis L.) and sage (Salvia officinalis L.) under controlled greenhouse cultivation. Intensive UV‐B radiation (2.5 kJ m?2 d?1) influenced positively the herbal yield. The essential oil content and composition of studied herbs were mainly affected by PAR and UV‐B radiation. In general, additional low‐dose UV‐B radiation (1 kJ m?2d?1) was most effective for biosynthesis of polyphenols in herbs. Analysis of major polyphenolic compounds provided differences in sensitivity of main polyphenols to PAR and UV‐B radiation. Essential oils and polyphenol‐rich extracts of radiated herbs showed essential differences in antioxidant capacity by the ABTS system. Information from this study can be useful for herbal biomass and secondary metabolite production with superior quality under controlled environment conditions.  相似文献   

2.
This study investigated the effects of radiation (PAR+UVA+UVB) on the development and growth rates (GRs) of young gametophytes of Gelidium floridanum. In addition, photosynthetic pigments were quantified, carotenoids identified, and photosynthetic performance assessed. Over a period of 3 days, young gametophytes were cultivated under laboratory conditions and exposed to photosynthetically active radiation (PAR) at 80 μmol photons m?2 s?1 and PAR+UVA (0.70 W m?2)+UVB (0.35 W m?2) for 3 h per day. The samples were processed for light and electron microscopy to analyze the ultrastructure features, as well as carry out metabolic studies of GRs, quantify the content of photosynthetic pigments, identify carotenoids and assess photosynthetic performance. PAR+UVA+UVB promoted increase in cell wall thickness, accumulation of floridean starch grains in the cytoplasm and disruption of chloroplast internal organization. Algae exposed to PAR+UVA+UVB also showed a reduction in GR of 97%. Photosynthetic pigments, in particular, phycoerythrin and allophycocyanin contents, decreased significantly from UV radiation exposure. This result agrees with the decrease in photosynthetic performance observed after exposure to ultraviolet radiation, as measured by a decrease in the electron transport rate (ETR), where values of ETRmax declined approximately 44.71%. It can be concluded that radiation is a factor that affects the young gametophytes of G. floridanum at this stage of development.  相似文献   

3.
The photoacclimation responses of the brown macroalga Sargassum cymosum were studied to determine its cytochemical and ultrastructural organization, as well as photosynthetic pigments and performance. S. cymosum was cultivated in three salinities (30, 35 and 40 psu) under four irradiation treatments: PAR‐only, PAR + UVA, PAR + UVB and PAR + UVA + UVB. Plants were exposed to PAR at 70 μmol photons m?2 s?1, PAR + UVB at 0.35 W m?2 and PAR +UVA at 0.70 W m?2 for 3 h per day during 7 days in vitro. Growth rate was not significantly affected by any type of radiation or salinity. The amount of pigments in S. cymosum was significantly influenced by the interaction of salinity and radiation treatments. Compared with PAR‐only, UVR treatments modified the kinetics patterns of the photosynthesis/irradiance curve. After exposure to UVR, S. cymosum increased cell wall thickness and the presence of phenolic compounds. The number of mitochondria increased, whereas the number of chloroplasts showed few changes. Although S. cymosum showed insensitivity to changes in salinity, it can be concluded that samples treated under four irradiation regimes showed structural changes, which were more evident, but not severe, under PAR + UVB treatment.  相似文献   

4.
The effect of ultraviolet (UV) radiation and copper (Cu) on apical segments of Pterocladiella capillacea was examined under two different conditions of radiation, PAR (control) and PAR+UVA+UVB (PAR+UVAB), and three copper concentrations, ranging from 0 (control) to 0.62, 1.25 and 2.50 μm . Algae were exposed in vitro to photosynthetically active radiation (PAR) at 70 μmol photons m?2 s?1, PAR + UVB at 0.35 W m?2 and PAR +UVA at 0.70 W m?2 during a 12‐h photocycle for 3 h each day for 7 days. The effects of radiation and copper on growth rates, content of photosynthetic pigments and photosynthetic performance were analyzed. In addition, samples were processed for light and transmission electron microscopy. The content of photosynthetic pigments decreased after exposure to radiation and Cu. Compared with PAR radiation and copper treatments modified the kinetics patterns of the photosynthesis/irradiance curve. The treatments also caused changes in the ultrastructure of cortical and subcortical cells, including increased cell wall thickness and accumulation of plastoglobuli, as well as changes in the organization of chloroplasts. The results indicate that the synergistic interaction between UV radiation and Cu in P. capillacea, led to the failure of protective mechanisms and causing more drastic changes and cellular imbalances.  相似文献   

5.
Ultraviolet-B (UVB;280–320 nm) radiation is a small but biologically significant portion of the solar spectrum reaching the earth's surface. Research interests have been fostered because UVB has been increasing in recent years due to depletion of stratospheric ozone. Ultraviolet-B that penetrates into plant tissue may damage important cellular macromolecules. Although there has been considerable research on the effects of UVB on plants, the influence of the level of photosynthetically active radiation (PAR;400–700 nm) on effects of UVB requires further definition as a prelude to studies of UVB sensitivity and defense mechanisms. Arabidopsis thaliana wildtype ecotype Landsberg erecta (LER), which is relatively insensitive to UVB, and the relatively sensitive LER-based mutant transparent testa-5 (tt5), were grown under 100 or 250 μmol m?2 s?1 PAR and then exposed to O or 7 kJ m?2 day ?1 UVBBE under these PAR levels. Plants exposed to UVB had reduced dry weight and leaf area and higher levels of UV-absorbing compounds in leaf tissue. The level of PAR did influence the effects of UVB, with the higher level of PAR prior to UVB exposure reducing sensitivity of LER to UVB. In contrast to other studies, higher PAR supplied simultaneously with UVB increased rather than decreased sensitivity of both genotypes to UVB. These results demonstrate the importance of controlling and comparing PAR levels when undertaking studies of UVB sensitivity, as effects of UVB on plants are influenced by the PAR levels plants are growing under prior to and during exposure to UVB.  相似文献   

6.
Global UV radiation was measured with a portable multichannel filter radiometer at the surface and underwater in a high mountain lake (2417 m above sea level) of the Austrian Alps during 16 days in summer 1995. During this period, total column ozone values that changed only by 34 Dobson units explained a significant part of the variability in UVB radiation at 305 nm as indicated by the negative correlation with the ratio 305:340 nm (rs= -0.810, P < 0.01). High radiation at the surface combined with high water transparency allowed substantial UVB radiation to reach the bottom of this lake. The diffuse attenuation coefficient for downward irradiance at 305 nm changed within 2 weeks from 0.24 m-1 (10% at 9.6 m depth) to 0.32 m-1 (10% at 7.2 m depth). This change in attenuation was related to the development of phytoplankton after the ice break-up as indicated by a six-fold increase in chlorophyll-a concentrations during this period. Our results suggest that phytoplankton and/ or phytoplankton-derived organic substances are important for the UV attenuation in this oligotrophic lake.  相似文献   

7.
This study aimed to evaluate the protective effect of artocarpin‐enriched (Artocarpus altilis) heartwood extract on the mechanical properties of UVB‐irradiated fibroblasts. Human skin fibroblasts were pretreated with 50 μg/mL?1 extract and later irradiated with UVB (200 mJ/cm?2). They were then cultured within three‐dimensional of free‐floating and tense collagen lattices. The pretreatment of fibroblasts with the extract prior to UVB radiation showed cells protection against UVB‐induced suppression of α‐SMA expression, fibroblast migration and contraction. These results reveal that the extract prevents mechanical damages induced by UVB irradiation in fibroblast‐embedded collagen lattices, and therefore, has a potential as a natural photo‐protectant.  相似文献   

8.
To determine the chronic skin effects caused by the interaction of infrared and ultraviolet B radiations, male Rattus norvegicus (Wistar) (2 months old) were exposed for 15 days to infrared radiation (600–1500 nm, with a peak at 1000 nm, n = 12) for 30 min (1080 J cm?2) (IRo); to ultraviolet B radiation (peak emission at 313 nm, n = 9) for 90 min (55.08 J cm?2) (UVB); to infrared radiation followed after 90 min by ultraviolet B (n = 6) (IRUVB) and to ultraviolet B followed after 90 min by infrared radiation (n = 9) (UVBIR). Skin samples were collected and histopathological analysis showed the presence of acanthosis, parakeratotic and orthokeratotic hyperkeratosis, intraepidermal pustules, keratin pearls, detachment of epidermis, collagen necrosis, inflammatory infiltrate, vasodilation, basal cell vacuolization and superficial dermis degeneration both in UVB and UVBIR treatments. IRUVB animals showed the same characteristics as above except for parakeratotic hyperkeratosis, keratin pearls and superficial dermis degeneration. To conclude, infrared radiation exposure after ultraviolet B irradiation increases skin damage without protecting the tissue, while infrared radiation exposure before ultraviolet B irradiation showed a protective effect against ultraviolet skin damage.  相似文献   

9.
High levels of ultraviolet‐B (UVB) radiation can negatively affect aquatic animals. Macrobrachium olfersi is a prawn that lives in clear freshwaters and during the breeding season, females carry eggs in an external brood pouch. Therefore, we hypothesize that eggs are also exposed to environmental UVB radiation. The aim of this study was to investigate whether UVB radiation induces DNA damage and compromises cell cycle in embryos of M. olfersi. In laboratory, UVB irradiance (310 mW. cm?2) that embryos receive in the natural environment was simulated. After irradiation, embryos were kept under different light conditions in order to recognize the presence of cell repair. UVB radiation induces DNA damage, specifically thymine dimers. After 48 h of UVB exposure, a significant decrease in the level of these dimers was observed in embryos kept under visible light while it remained constant in the dark. Moreover, under visible light and darkness, a decrease in proliferation was observed after 48 h of irradiation. An increase in PCNA expression and decrease in p53 expression were observed after, respectively, 1 and 48 h of exposure. Our results showed that UVB radiation disturbs the cell cycle and induces DNA damage in M. olfersi embryos. However, under visible light these embryos showed successful DNA repair.  相似文献   

10.
A multiple linear correlation is done between atmospheric transmissivity for four biologically active radiation daily doses (UVB, erythemal, DNA and plant damage) T, and three parameters (daily sunshine fraction σ, cosine of the daily minimum solar zenith angle μmin and daily total ozone column Ω). T is defined as the ratio of a daily dose to its extra‐atmospheric value. The data used are spectral UV measurements (390–400 nm at 0.5 nm step) recorded along year 2000 and over 8 months of year 2001 at Briançon Station (Alps, 1300 m above sea level) that forms part of the French UV network. The coefficients obtained from year 2000 correlation permit to retrieve daily doses for year 2001 with an average error running from 3 to 9% for monthly mean values and from 2 to 4.5% for 3‐monthly mean values, depending on daily dose type. The retrieval of yearly mean value gives an error between 4 and 7.5%. Retrieving the daily dose of a given day, where σ≥ 0.2, introduces error running from 16 to 32% depending on daily dose. An attempt to retrieve the yearly mean UVB daily dose for a northern France site, from the previous coefficients, gives encouraging results.  相似文献   

11.
The permeability (SD) of ozone in a silicone polycarbonate copolymer has been measured by monitoring the depletion of 10,10′-dimethyl-9,9′-biacridylidene (DBA) impregnated into the polymer. The quantity (2SD)1/2 varies linearly with membrane thickness. Extrapolation of this linear relationship to zero thickness provides a positive y-intercept that can be taken to be the intrinsic permeability of ozone in the silicone portion of this copolymer [SD = 115 ± 17 × 10?9 (cm3 gas) cm sec?1 cm?2 (cmHg, ΔP)?1]. This result compared favorably with the modeled permeability of ozone in silicone homopolymers [142 ± 15 × 10?9 (cm3 gas) cm sec?1 cm?2 (cmHg, ΔP)?1]. The lower permeability determined for the copolymer, when compared with the modeled value, was attributed to a reduced mobility of the amorphous silicone blocks caused by the presence of the crystalline polycarbonte blocks. The permeability was shown to be independent of ozone concentrations, flow rate, temperature, and humidity over the ranges used in these experiments. This method identifies a technique that may be useful in quantitating the permeability of ozone in packaging materials, tire sidewalls, and industrial polymers.  相似文献   

12.
Solar ultraviolet (UV) radiation, particularly its UVB (280–320 nm) spectrum, is the primary environmental stimulus leading to skin carcinogenesis. Several botanical species with antioxidant properties have shown photochemopreventive effects against UVB damage. Costa Rica's tropical highland blackberry (Rubus adenotrichos) contains important levels of phenolic compounds, mainly ellagitannins and anthocyanins, with strong antioxidant properties. In this study, we examined the photochemopreventive effect of R. adenotrichos blackberry juice (BBJ) on UVB‐mediated responses in human epidermal keratinocytes and in a three‐dimensional (3D) reconstituted normal human skin equivalent (SE). Pretreatment (2 h) and posttreatment (24 h) of normal human epidermal keratinocytes (NHEKs) with BBJ reduced UVB (25 mJ cm?2)‐mediated (1) cyclobutane pyrimidine dimers (CPDs) and (2) 8‐oxo‐7,8‐dihydro‐2′‐deoxyguanosine (8‐oxodG) formation. Furthermore, treatment of NHEKs with BBJ increased UVB‐mediated (1) poly(ADP‐ribose) polymerase cleavage and (2) activation of caspases 3, 8 and 9. Thus, BBJ seems to alleviate UVB‐induced effects by reducing DNA damage and increasing apoptosis of damaged cells. To establish the in vivo significance of these findings to human skin, immunohistochemistry studies were performed in a 3D SE model, where BBJ was also found to decrease CPDs formation. These data suggest that BBJ may be developed as an agent to ameliorate UV‐induced skin damage.  相似文献   

13.
Conidia are responsible for reproduction, dispersal, environmental persistence and host infection of many fungal species. One of the main environmental factors that can kill and/or damage conidia is solar UV radiation. Cyclobutane pyrimidine dimers (CPD) are the major DNA photoproducts induced by UVB. We examined the conidial germination kinetics and the occurrence of CPD in DNA of conidia exposed to different doses of UVB radiation. Conidia of Aspergillus fumigatus, Aspergillus nidulans and Metarhizium acridum were exposed to UVB doses of 0.9, 1.8, 3.6 and 5.4 kJ m−2. CPD were quantified using T4 endonuclease V and alkaline agarose gel electrophoresis. Most of the doses were sublethal for all three species. Exposures to UVB delayed conidial germination and the delays were directly related both to UVB doses and CPD frequencies. The frequencies of dimers also were linear and directly proportional to the UVB doses, but the CPD yields differed among species. We also evaluated the impact of conidial pigmentation on germination and CPD induction on Metarhizium robertsii. The frequency of dimers in an albino mutant was approximately 10 times higher than of its green wild-type parent strain after exposure to a sublethal dose (1.8 kJ m−2) of UVB radiation.  相似文献   

14.
15.
Photosynthetic bacteria are attractive for biotechnology because they produce no oxygen and so H2‐production is not inhibited by oxygen as occurs in oxygenic photoorganisms. Rhodopseudomonas palustris and Afifella marina containing BChl a can use irradiances from violet near‐UV (VNUV) to orange (350–650 nm) light and near‐infrared (NIR) light (762–870 nm). Blue diode‐based pulse amplitude modulation technology was used to measure their photosynthetic electron transport rate (ETR). ETR vs Irradiance curves fitted the waiting‐in‐line model—ETR = (ETRmax × E/Eopt) × exp (1 ? E/Eopt). The equation was integrated over pond depth to calculate ETR of Afifella and Rhodopseudomonas in a pond up to 30 cm deep (A376, 1 cm = 0.1). Afifella saturates at low irradiances and so photoinhibition results in very low photosynthesis in a pond. Rhodopseudomonas saturates at ≈15% sunlight and shows photoinhibition in the surface layers of the pond. Total ETR is ≈335 μmol (e?) m?2 s?1 in NUV + photosynthetically active radiation light (350–700 nm). Daily ETR curves saturate at low irradiances and have a square‐wave shape: ≈11–13 mol (e?) m?2 day?1 (350–700 nm). Up to 20–24% of daily 350–700 nm irradiance can be converted into ETR. NIR is absorbed by water and so competes with the bacterial RC‐2 photosystem for photons.  相似文献   

16.
Solar UVB radiation evokes photokeratitis, accompanied by increased corneal hydration and changes in corneal transparency, resulting in increased light absorption. Corneal optical properties are disturbed and visual acuity decreased. The aim of this study was to investigate the reversibility of these UVB‐induced changes. Rabbit corneas were irradiated with UVB doses of 0.5 J cm?2 or 1.01 J cm?2 during 4 days. Some rabbits were sacrificed after the last irradiation and some 2 months later. Corneas were investigated spectrophotometrically for light absorption, and corneal hydration was evaluated by central corneal thickness with an ultrasonic pachymeter. Corneal impression cytologies were examined immunohistochemically for proinflammatory cytokines and malondialdehyde. The increased corneal light absorption, hydration and the staining of immunohistochemical markers found in corneas after irradiation returned to normal values during 2 months in corneas irradiated with the lower UVB dose. In contrast, in corneas irradiated with the higher UVB dose, a moderate but statistically significant increase in corneal light absorption, hydration and positive immunohistochemical stainings remained as residual changes. This was in contrast to normal corneas, where the staining of proinflammatory cytokines as well as malondialdehyde was negative. In conclusion, the reversibility of UVB‐induced disturbances was dependent on UVB dose.  相似文献   

17.
The objective of this communication is to present the calculated ratio between UVA and UVB irradiance from sunrise to sunset and under a number of weather conditions. UVA plays an important role in the sun spectrum and a lot of attention has been paid lately regarding the protection of people from UVA. Solar spectra were collected in Kuwait City located at 29.3oNorth latitude (similar to that of Houston, TX) over a period of 8 months and under various weather conditions. Spectra were collected from 260 nm to 400 nm in 2 nm increments for solar elevation angles from 10o to 90o using a calibrated Optronics Laboratories OL‐742 Spectroradiometer. The measurements reported in this study the ratio of UVA (320–400 nm) to UVB (280–320 nm) in solar terrestrial radiation remains essentially constant and equal to 20 for the part of the day when the solar elevation is greater than 60o. Consequently the value of the ratio of solar UVA/UVB should be considered as equal to 20 for studies in photobiology and photomedicine. When the wavelength limiting the range of UVA and UVB is 315 nm (i.e. UVB: 280–315 nm and UVA: 315–400 nm) the ratio of UVA to UVB becomes equal to 41.  相似文献   

18.
UVA‐activated psoralens are used to treat hyperproliferative skin conditions due to their ability to form DNA photoadducts, which impair cellular processes and may lead to cell death. Although UVA (320–400 nm) is more commonly used clinically, studies have shown that UVB (280–320 nm) activation of psoralen can also be effective. However, there has been no characterization of UVB‐induced adduct formation in DNA alone. As psoralen derivatives have a greater extinction coefficient in the UVB region (11 800 cm?1 M?1 at 300 nm) compared with the UVA region (2016 cm?1 M?1 at 365 nm), a greater extent of adduct formation is expected. SELDI‐TOF, a proteomic technique that combines chromatography with mass spectrometry, was used to detect photoadduct formation in an alternating A–T oligonucleotide. 8‐Methoxypsoralen (8‐MOP) and DNA solutions were irradiated with either UVA or UVB. An adduct peak was obtained with SELDI‐TOF. For UVB‐activated 8‐MOP, the extent of adducts was three times greater than for UVA. HPLC ESI‐MS analysis showed that UVB irradiation yielded high levels of 3,4‐monoadducts (78% of total adducts). UVA was more effective than UVB at conversion of 4′,5′‐monoadducts to crosslinks (17% vs 4%, respectively). This report presents a method for comparing DNA binding efficiencies of interstrand crosslink inducing agents.  相似文献   

19.
An extended geminal model has been applied to determine the interatomic potential for the X1Σ state of Be2. By adopting a (23s, 10p, 8d, 6f, 3g, 2h) uncontracted Gaussian‐type basis, the following spectroscopic parameters are obtained: Re = 4.633 a.u. (4.63 a.u.), De = 945 ± 15 cm (790 ± 30 cm), G(1)–G(0) = 221.7 cm?1 (223.8 ± 2 cm?1), G(2)–G(1) = 175.0 cm?1 (169 ± 3 cm?1), G(3)–G(2) = 123.1 cm?1 (122 ± 3 cm?1), and G(4)–G(3) = 80.8 cm?1 (79 ± 3 cm?1), experimental values in parentheses. The calculated binding energy is substantially higher than the accepted experimental value. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

20.
2-Vinyl anthraquinone has been polymerized, via radiation-induced initiation, in dimethyl-sulphoxide and in dichloromethane. Solvent to monomer ratios of 1 : 0.030 to 1 : 0.0167 mol have been examined for dose rates in the range 0.035 to 0.129 Gy s?1 and exposure times in the range 1.44 × 104 to 4.32 × 106 s. Rates of polymerization were found to lie in the range from 2.4 × 10?8 to 1.92 × 10?6 mol L?1 s?1. Values for the chain transfer constant to dimethyl-sulphoxide and to dichloromethane have been calculated. In addition, values of the kinetic ratio k/kt, for the polymerization of 2-vinyl anthraquinone have been estimated. The dependence of Rp on the monomer concentration and on the radiation intensity have been shown to be in broad agreement with a simplified steady-state kinetic scheme. A value of G(radical) for 2-vinyl anthraquinone was obtained via electron spin resonance studies, and shown to be 0.24. This G(radical) value and those obtained indirectly from kinetic data are discussed in relation to the molar mass values obtained from the poly(2-vinyl anthraquinone) products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号