首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The infrared absorption spectrum of a single crystal of MoSe2 is reported. A damped oscillator fit to the fundamental band gives the transverse optic frequency, ΩTO = 277 cm-1 at 300° K and ΩTO = 283 cm-1 at 77° K. The static and high frequency dielectric constants have been determined as Ks = 16.81 and K = 10.24 respectively. An absorption band appears in the i.r. spectrum at 482 cm-1, and has been attributed to the oxygen impurity in the crystal.  相似文献   

2.
EPR of 61Ni+ doped CuGaS2 at 4.2 K leads to the following experimental data: g = 1.918 ± 0.006 A  < 12 × 10-4cm-1, g = 2.328±0.006 A = (65±2) × 10-4cm-1. High axial field splitting of 2T2 state stabilizes the center against Jahn-Teller interaction. Covalency reduction factor k is 0.76.  相似文献   

3.
The Raman active fundamentals ν1(A1g), ν2(Eg), ν5(F2g), and the overtone 2ν6 of SF6 have been investigated with a higher resolution and the band origins were estimated to be: ν1 = 774.53 cm?1, ν2 = 643.35 cm?1, ν5 = 523.5 cm?1, and 2ν6 = 693.8 cm?1. Raman and infrared data have been combined for estimation of several anharmonicity constants. The ν6 fundamental frequency is calculated as 347.0 cm?1. From the analysis of the ν2 Raman band, the following rotational constants of both the ground and upper states have been calculated:
B0 = 0.09111 ± 0.00005cm?1; D0 = (0.16±0.08)10?7cm?1
;
B2 = 0.09116 ± 0.00005cm?1; D2 = (0.18±0.04)10?7cm?1
.  相似文献   

4.
A weak emission spectrum of I2 near 2770 Å is reanalyzed and found to to minate on the A(1u3Π) state. The assigned bands span v″ levels 5–19 and v′ levels 0–8. The new assignment is corroborated by isotope shifts, band profile simulations, and Franck-Condon calculations. The excited state is an ion-pair state, probably the 1g state which tends toward I?(1S) + I+(3P1). In combination with other results for the A state, the analysis yields the following spectroscopic constants: Te = 10 907 cm?1, De = 1640 cm?1, ωe = 95 cm?1, R″e = 3.06 A?; Te = 47 559.1 cm?1, ωe = 106.60 cm?1, R′e = 3.53 A?.  相似文献   

5.
The (1-0), (2-0), and (3-0) transitions of 15N16O and 15N18O are investigated. The wavenumbers of the rotation-vibration lines are reported for the overtone bands and the 2Π32-2Π12 (1-0) subband. It is shown that in the data reduction it is advantageous to calculate first merged spectroscopic constants ignoring the Λ-type doubling. The vibrational constants ωe, ωexe, ωeye and the vibrational dependence of the rotational constants are determined. The study of 15N18O allows the determination of the equilibrium values of the centrifugal distortion correction ADe to the spin-orbit constant and of the spin-rotation constant γe from the isotopic invariance of the ratios ADeBe and γeBe. It is found that ADeBe = (?3.9 ± 1.3) × 10?6 and γeBe = (?4.00 ± 0.05) × 10?3.  相似文献   

6.
Pulsed field experiments up to 450 kOe have been performed on FeSiF6.6H2O. We interpret the data: (i) in terms of spin hamiltonian constants: D = 12.3± 0.2 cm-1 (E = 0.54cm-1 being known from EPR data); (ii) in terms of axial-crystal-field parameters: δλ = orbital trigonal splitting/spin-orbit coupling = 15 ± 2; λ = -100 ± 7cm?1. The magnetic axis is found to deviate from the cristallographie c axis by an angle 1° < θ < 2°. The adiabatic cooling obtained during the pulse is discussed.Similar experiments on Fe0.15Zn0.85SiF6.6H2O and Fe0.30Zn0.70SiF6.6H2O single crystals are reported; in both cases we measure Dg = 6.0 ± 0.1cm-1. Using EPR data, we obtain D = 14.3cm-1, λ ~ ?75cm-1, δ ~ 195cm-1; using Mössbauer data, we obtain D = 15.3cm-1, λ ~ ?88cm-1, δ ~ 185cm-1.  相似文献   

7.
Absorption and emission spectra of Mo2 were investigated using flash photolysis of the Mo(CO)6 molecule. Tentative vibrational and rotational analyses of the 98Mo2 spectra were performed. For the ground state, 1Σg+ type was proposed with ωe = 477.1 cm?1, re = 1.929 A?, and D0(Mo2) = 95 ± 15 kcal mole?1. The results were compared with theoretical calculations for Mo2 and experimental results for Cr2 obtained previously. It seems reasonable that the transition metal diatomic molecules of this type have a high bond order.  相似文献   

8.
Medium resolution infrared grating spectra of gaseous ketene, H2CCO were recorded between 1000 and 400 cm?1, both at instrument temperature (40°C) and with cooling (?40°C). Interferometric Fourier spectra were also measured at ?70°C with resolution 0.22 cm?1 between 450 and 330 cm?1. The K structure of the fundamentals ν5, ν6, ν8, and ν9 was assigned. These fundamentals are coupled by a-axis Coriolis interactions. These couplings were analysed on the symmetric top basis for setting up the perturbation matrix and by utilizing the K-dependent Coriolis shifts of levels. A preliminary analysis of the Coriolis intensity anomalies was also undertaken.Band center values from combination differences are ν50 = 587.30 (27) and ν60 = 528.36 (39) cm?1. Synthetic spectra indicate the band origins of ν8 and ν9 to be close to 977.8 and 439.0 cm?1, respectively. Estimates of Coriolis coupling constants obtained from synthetic spectra are ζ58a = + 0.33 (5), ζ68a = + 0.714 (20), ζ59a = ? 0.774 (20), and ζ69a = ? 0.30 (2). Approximate ratios of unperturbed vibrational transition moments obtained from spectral simulations are M80:±iM50:±iM60:M90 ≈ +2:?9:+10:+0.5.  相似文献   

9.
The vibration-rotation transitions for v = 1 ← 0 of NO (2Π12) have been studied by using the technique of laser magnetic resonance spectroscopy. Five magnetic resonance lines are observed with three CO laser lines in the range from 1859 to 1886 cm?1. From these, three zero-field transition frequencies, v = 1 ← 0; R(32), P(72), and P(92) are obtained with an accuracy of ±0.0007 cm?1. The molecular constants which have been determined by borrowing centrifugal constants from a previous infrared work are B021 = 1.72004 ± 0.00006 cm?1, B121 = 1.70212 ± 0.00010 cm?1, and G(v = 1) ? G(v = 0) (for 2Π12) = 1875.8470 ± 0.0007 cm?1.  相似文献   

10.
The 0-0, 1-1, 2-2, and 3-3 bands of the A2Π-X2Σ+ transition of the tritiated beryllium monohydride molecule have been observed at 5000 Å in emission using a beryllium hollow-cathode discharge in a He + T2 mixture. The rotational analysis of these bands yields the following principal molecular constants.
A2Π:Be = 4.192 cm?1; re = 1.333 A?
X2Σ:Be = 4.142 cm?1; re = 1.341 A?
ωe′ ? ωe″ = 16.36 cm?1; ωe′Xe′ ? ωe″Xe″ = 0.84 cm?1
From the pure electronic energy difference (EΠ - EΣ)BeT = 20 037.91 ± 1.5 cm?1 and the corresponding previously known values for BeH and BeD, the following electronic isotope shifts are derived
ΔEei(BeH?BeT) = ?4.7 ≠ 1.5cm1, ΔEei(BeH?BeT) = ?1.8 ≠ 1.5cm1
and related to the theoretical approach given by Bunker to the problem of the breakdown of the Born-Oppenheimer approximation.  相似文献   

11.
The infrared spectrum of yttrium monoiodide has been excited in an electrodeless microwave discharge and explored between 2500 and 12 000cm?1 with a high-resolution Fourier transform spectrometer. A unique system is observed (ν00 = 9905.520 cm?1), which we attribute to a 1Π1Σ transition and an extensive analysis is made. Rovibrational constants are obtained for both states mainly from a simultaneous multiband fitting. This procedure is applied to the whole set of 2231 observed line wavenumbers in the 1-0, 0-0, and 0–1 bands, yielding a final weighted standard deviation of 0.0038 cm?1. Furthermore, a partial analysis of the 2-0 and 3-1 bands is performed. The following equilibrium constants are derived (cm?1):
ω′e=192.210 ω′ex′e=0.463
B′e=0.0399133 α′e=0.0001150
ω″e=215.815 ω″ex″e=0.514
B″e=0.0422163 α″e=0.0001125
High-order constants Dv and Hv are also calculated for the various vibrational levels (v′ = 0, 1, 2, 3; v″ = 0, 1).  相似文献   

12.
The flash photolysis of ClO2 has yielded a new absorption spectrum of ClO in the vacuum ultraviolet. Six electronic transitions have been assigned and vibrational constants for the upper states are given. All of the transitions are Rydberg in nature. The first four of these transitions are thought to be 2Σ ← X2Πi from which a spin-orbit coupling constant A = ?318 ± 5 cm?1 is obtained for the ground state.Hot bands in three of the above systems of ClO have been observed in absorption. This has enabled the direct measurement of the ground state vibrational constant (ΔG12″ = 845 ± 4 cm?1; ωe″ = 859 cm?1) for the first time.Extinction coefficients for a number of the ClO transitions have been measured.  相似文献   

13.
The quadrupole interaction frequencies ω0 = 3eQ1Vzz41(21-1) h? in the 5? state of 118Sn have been measured by time differential perturbed angular correlation technique in Sn, Sb and (95% Sn+5% Sb) environments. The ω0 for 116Sn was determined in Sn environment only. With the help of the known electric field gradient 1) of Sn in a Sn lattice the quadrupole moments have been deduced as Q(5?, 118Sn) = ±0.10(4) b and Q(5?, 116Sn) = ±0.165(60) b. These values together with the known2) quadrupole moment of the analogous 5? state in 120Sn are interpreted in terms of the pure single-particle model. The data exhibit the expected strong systematic variation of QI with the number of particles in the h112. subshell which is being filled with 1, 3 and 5 neutrons in 116Sn, 118Sn, and 120Sn, respectively.  相似文献   

14.
The 276-nm absorption band system (1B21A1) of m-dichlorobenzene was photographed under high resolution. The electronic origin band (0, 0) and a band at (0 + 380) cm?1 were subjected to rotational “band contour” analysis. As a result, it is found that the origin band has a type A band contour and that at (0 + 380) cm?1 exhibits a type B band contour. The band contour analysis also yields an accurate determination of the excited state parameters, viz., A′ = 0.0911 ± 0.0003, B′ = 0.02852 ± 0.00005, and C′ = 0.02175 ± 0.00001 cm?1. A model geometry for the molecule m-DCB in its first excited singlet state has been proposed.  相似文献   

15.
Cyclotron resonance of electron and holes have been optically detected at 70 GHz and at 1.8 K in n-type CdTe. The bare effective masses, in unit of the free electron mass, are found to be: m1 = 0.088 ± 0.004, m1lh = 0.12 ± 0.01, m1 = 0.60 ± for H // <100>, and m1e = 0.089 0.004, m1lh = 0.11 ± 0.01, m1hh = 0.69 ± 0.02 for H // <111>. The Luttinger valence band parameters deduced from these measurements are: γ1 = 5.3 ± 0.5, γ2 = 1.7 ± 0.3 and γ3 = 2.0 ± 0.3, in fair agreement with the calculations of Lawaetz.  相似文献   

16.
The disagreement of Danyluk and King's (Chem. Phys.25, 343 (1977)) rotational constants for levels lying near the dissociation limit of B-state I2 with the mechanical behavior predicted by near-dissociation theory is investigated. The discrepancies are shown to be much too large to be explained by either the neglect of centrifugal distortion effects in the original analysis or by rotational or spin-rotation coupling to a nearby repulsive 1u state. These differences are therefore attributed to experimental error, a conclusion which is confirmed by more recent experimental results. A reanalysis of the best available data for levels near the dissociation limit of B-state I2 then yields improved values for the B-state dissociation limit D = 20 043.16 (±0.02) cm?1 of the vibrational index at dissociation vD = 87.32 (±0.04) and of the long-range potential constant C5 = 2.88 (±0.03) × 105cm?1A?5. This in turn implies a slightly improved ground-state dissociation energy of D0 = 12 440.18 (±0.02) cm?1.  相似文献   

17.
A stroboscopic technique for the observation of quadrupole hyperfine interactions of isomeric nuclear states has been successfully developed. The inherent precision and resolution of this technique have been demonstrated by measuring the quadrupole hyperfine frequency for 69Ge(92+1, τ = 4.0μ) in Zn metal at several temperatures; ω0 = [19.67 ± 0.06] × 106s?1 (at 623 ± 3 K).  相似文献   

18.
A millimeter-wave spectrometer having a sensitivity of 4 × 10?10 cm?1 in the 2-mm region has been constructed for observation of extremely weak millimeter-wave spectra of gases. It has been used to measure JJ, K = 0 ← 3 transitions in PH3 and JJ, K = 0 ← 3 as well as K = ±1 ← ±4 transitions in PD3. The B0 and C0 spectral constants (in MHz) are: for PH3, B0 = 133 480.15 ± 0.12 and C0 = 117 488.85 ± 0.16; for PD3, B0 = 69 471.10 ± 0.03 and C0 = 58 974.37 ± 0.05. The effective ground-state values obtained for the bond angle and bond length are: for PH3, r0 (A?) = 1.4200 and α0(o) = 93.345; for PD3, r0 (A?) = 1.4176 and α0(o) = 93.359. The corresponding zero-point-average values were calculated to be: for PH3, rz (A?) = 1.42699 ± 0.0002 and αz(o) = 93.2287; for PD3, rz (A?) = 1.42265 ± 0.0001 and αz(o) = 93.2567 ± 0.004. For both species, the equilibrium values are re (A?) = 1.41159 ± 0.0006 and αe(o) = 93.328 ± 0.02.  相似文献   

19.
《Physics letters. A》1986,118(8):419-421
A correlation formula between the mode Grüneisen parameter γj and the frequency ratio of LO and TO phonons is semiempirically derived and compared with the experimental values for a large number of cubic binary and few ternary compounds. This relationship is represented by a linear function of x2 (x=ωLOωTO).  相似文献   

20.
The gas phase infrared spectra of monoisotopic H3Si35Cl and H3Si37Cl have been studied in the ν1ν4 region near 2200 cm?1 with a resolution of 0.012 and 0.04 cm?1, respectively, and rotational fine structure for ΔJ = ±1 branches has been resolved. In addition, some information on ν3 + ν4 of H3Si35Cl near 2750 cm?1 has been obtained. ν1 and ν4 are weakly coupled by Coriolis x, y resonance, BΩ14ζ14 ~ 2 × 10?3cm?1, only the upper states K′ = 2, l = 0 and K′ = 1, l = ?1 being substantially affected. Local perturbation due to rotational l(±1, ±1)-type resonance with ν3 + ν5+1 + ν6+1 and ν3 + ν5+1 + ν6?1 is revealed in the ΔK = +1 and ?1 branches, respectively. From a fit of the experimental line positions, standard deviations of 1.4 and 3.8 × 10?3 cm?1, respectively, to a model with five interacting levels conventional excited state parameters and interaction constants have been obtained. In H3Si35ClH3Si37Cl the fundamentals are ν1, 2201.94380(15)2201.9345(7) and ν4, 2209.63862(8)2209.6254(2) cm?1, respectively. Q branches of the “hot” band (ν3 + ν4) ? ν3 and of ν4 of the 29Si and 30Si species have been detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号