首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structure formation during the sol-gel transition of resorcinol-formaldehyde (RF) solutions was traced by dynamic light scattering (DLS) and static light scattering (SLS) techniques. The decay time spectra obtained by DLS revealed that both the growth rates of colloidal particles formed during the early stage of the sol-gel transition and the time required for the colloidal particles to form a firm network structure could be related to the ratio of catalyst to water (C/W) of the starting RF solution. SLS results indicated that the molecular weight of colloidal particles increased with the progress of the sol-gel transition, the rate of which was also affected by the value of C/W. The mesoporosity of RF aerogels, which were prepared by drying RF hydrogels with supercritical carbon dioxide, was confirmed to depend on the size of colloidal particles estimated from the decay time spectrum collected at the last stage of the sol-gel transition.  相似文献   

2.
Droplets containing polymer particles were deposited on a substrate. Poly(N-isopropylacrylamide) (PNIPAM) hydrogel and particles with PNIPAM graft chains on the surface self-assembled into a two-dimensional (2-D) superlattice when their dilute dispersions were dried on substrates. The capillary force between the particles induced ordered array formation during water evaporation. The presence of a PNIPAM layer on the particle surface gave the particles steric stability during ordered array formation. By grafting PNIPAM chains on particle surfaces by living radical polymerization, we successfully controlled the structural patterns of the colloidal arrays. These, controllable, 2-D colloidal arrays were generated on various substrates upon air-drying.  相似文献   

3.
Soft colloidal particles such as hydrogel microspheres assemble at air/water or oil/water interfaces, where the soft colloids are highly deformed and their surface polymer chains are highly entangled with each other. Herein, we report the formation of robust one‐dimensional, string‐like colloidal assemblies through self‐organization of hydrogel microspheres with shape anisotropy at the air/water interface of sessile droplets. Shape‐anisotropic hydrogel microspheres were synthesized via two‐step polymerization, whereby a hydrogel shell was formed onto preformed rigid microellipsoids. The shape anisotropy of the hydrogel microspheres was confirmed by transmission electron microscopy and high‐speed atomic force microscopy as well as by light‐scattering measurements. The present findings are crucial for the understanding of natural self‐organization phenomena, where “softness” influences microscopic assembled structures such as those of Nostoc bacteria.  相似文献   

4.
基于温敏水凝胶的可调胶体晶体制备   总被引:1,自引:1,他引:0  
基于单分散胶体粒子悬浊液在温敏水凝胶表面可以形成湿润型胶体晶体的现象, 利用温敏水凝胶对水的控释作用制备了温度敏感的可调制胶体晶体. 在室温下利用提拉法在温敏水凝胶聚N-异丙基丙烯酰胺(PNIPAAm)表面制备湿润型胶体晶体膜. 由于胶体粒子的有序排列, 胶体晶体显示出一个尖锐的反射峰. 当温度上升到34 ℃以上时, 由于PNIPAAm水凝胶中的水被释放, 导致胶体晶体中粒子浓度降低, 粒子间距增加; 反射峰发生红移. 这些特性可以通过温度变化进行调制.  相似文献   

5.
Suspensions of undoped SnO2 nanoparticles and containing Eu3+ ions were prepared by a sol-gel procedure. Using the classical synthesis method (precipitation), the particles tend to grow by a coarsening process in order to minimize the surface free energy. This effect can strongly be reduced by the addition of an amide and surfactant during the synthesis, which decreases the surface free energy of the colloidal particles. These additives promote the formation of powders composed of very small primary particles formed by a crystallite of 10 Å, and exhibit good redispersion properties. The local and long order structures of the redispersible powder were studied by X-rays absorption spectroscopy at Sn LI edge and X-rays diffraction, respectively. The structure of the colloidal aggregates in suspension was investigated by small angle X-rays scattering (SAXS). SAXS results indicate the sol are composed by a polidisperse system of hard spheres resulting of agglomeration of the primary particles and their size increasing by agglomeration for progressively higher Eu3+ content.  相似文献   

6.
The thermal properties and temperature-responsive nanoparticle formation of poly(N-isopropylacrylamide) grafted with single-stranded DNA (PNIPAAm-g-DNA) were investigated. Copolymerization between nonamer single-stranded DNA with a vinyl group at its 5' terminus (DNA macromonomer) and NIPAAm was carried out so that the DNA macromonomer unit content should be less than 1 mol %. The turbidimetry and differential scanning calorimetry of the copolymer showed that the transition temperature increased and the enthalpy change of the phase transition decreased with increasing DNA macromonomer content in the copolymers, indicating that the DNA macromonomer behaves as a hydrophilic part in the copolymer and that the hydrophilicity is greater than that of sodium styrenesulfonate. Above the phase transition temperature, the copolymers formed colloidal nanoparticles with a dehydrated PNIPAAm core surrounded by DNA. When the formation of particles was conducted at higher temperatures, the dehydration of the copolymers proceeded such that the hydrodynamic radius (Rh) of the particles decreased. From the results of light scattering measurements, we calculated the surface area of particles occupied by one DNA (S(DNA)). The S(DNA) value decreased with increasing formation temperature, indicating that the DNA density on the particle surface increases with increasing formation temperature. The increase in the DNA density was also confirmed from the zeta-potential measurement of the particle. When MgCl2 was added to the copolymer solutions, the anionic charge of DNA was neutralized by Mg2+ so that Rh and the molecular weight of the particles increased with the increasing MgCl2 concentration. The turbidimetric detection of a target DNA was successfully demonstrated by utilizing the stability decrease of the colloidal particle upon hybridization on the particle surface.  相似文献   

7.
We present a new method for laser direct writing in self-assembled hydrogel microparticle colloidal crystals via photothermal excitation of co-assembled colloidal Au particles. Close-packed colloidal crystals are assembled from approximately 224 nm diameter, thermoresponsive, poly-N-isopropylacrylamide hydrogel microparticles (microgels); these crystals display sharp Bragg diffraction peaks in the mid-visible region of the spectrum due to the periodic dielectric function of the assembly. Raising the temperature of the crystal above the characteristic volume phase transition temperature of the microgel particles results in a reversible melting of the crystalline material due to the particle-based deswelling event. This transition can be used either to anneal defects from the crystalline material or to controllably and reversibly convert the assembly from the colored, crystalline state to a nondiffracting glassy material. Crystal-to-glass transitions are similarly accomplished via photothermal excitation when 16 nm diameter colloidal Au particles are co-assembled with the responsive microgels. Excitation of the colloidal Au plasmon absorption with a frequency doubled Nd:YAG laser (lambda = 532 nm) results in optically directed conversion of either glasses to crystals or crystals to glasses, depending on the initial state of the assembly and the illumination time. These results represent a fundamentally new method for the patterning of self-assembled photonic materials.  相似文献   

8.
Hybrid organic-inorganic nanocomposites containing uniform distributions of metal nanoparticles have been prepared by mixing a preformed nanoparticle colloid with the precursors of a ureasil, prior to the sol-gel transition. These nanocomposites possess not only high optical quality and optical features dictated by the size and shape of the nanoparticle dopants but also a high degree of flexibility, which can largely enhance the range of applications in practical devices. The deposition of a uniform silica shell on the nanoparticle surface prior to the sol-gel transition was found to be required to maintain the colloidal stability during the process and, thus, to retain the optical properties in the final nanocomposite material. This method can be readily extended to other materials, such as semiconductor and magnetic nanoparticles.  相似文献   

9.
We present the phase diagrams for neutral patchy colloidal particles whose surface is decorated by different number of identical patches, where each patch serves as an associating site. The hard-core Lennard-Jones (LJ) potential and associating interaction are incorpo-rated into the free energies of patchy particles in phases of the fluid (F), random close packing (RCP), and face-centered-cubic (FCC) crystal. A rich phase structure of patchy particles with F-F, F-RCP, and F-FCC transitions can be observed. Meanwhile, the sol-gel transition (SGT) characterizing the connectivity of patchy particles is also investigated. It is shown that, depending on the number of patches and associating energy, the F-F transition might be metastable or stable with respect to the F-RCP and F-FCC transitions. Meanwhile, the critical temperatures, critical densities, triple points, and SGT can be significantly regulated by these factors.  相似文献   

10.
Poly(vinyl alcohol) (PVA) was used as a steric stabilizer for the dispersion polymerization of cross-linked poly(N-isopropylacrylamide) (PNIPAM) in water. A series of reactions were carried out using PVA of varying molecular weight and degree of hydrolysis. Under appropriate conditions, PNIPAM particles of uniform and controllable size were produced using PVA as the stabilizer. The colloidal stability was investigated by measuring changes in particle size with temperature in aqueous suspensions of varying ionic strength. For comparison, parallel colloidal stability measurements were conducted on PNIPAM particles synthesized with low-molecular-weight ionic surfactants. PVA provides colloidal stability over a wide range of temperature and ionic strength, whereas particles produced with ionic surfactants flocculate in moderate ionic strength solutions upon collapse of the hydrogel as the temperature is increased. Experimental results and theoretical consideration indicate that sterically stabilized PNIPAM particles resulted from the grafting of PVA to the PNIPAM particle surface. The enhanced colloidal stability afforded by PVA allows the temperature-responsive PNIPAM particles to be used under physiological conditions where electrostatic stability is ineffective.  相似文献   

11.
A simple method to synthesize tetragonal zirconia stabilized at ambient temperature is developed and allows the monitoring of the tetragonal-monoclinic transition via a colloidal sol-gel process. By increasing the pH of an aqueous solution consisted of a zirconium precursor and a complexing agent (acetylacetone), a colloidal sol and then a gel can be formed under slightly acidic condition. After a drying step, tetragonal zirconia is easily obtained with an adequate thermal treatment at low temperature. The tetragonal-monoclinic transition occurs when the calcination temperature is increased. The relationship between the crystallite size, the crystallographic structure and the thermal treatment has been investigated by X-Ray Diffraction and the behaviour of the system from the gel state to the final powder has been studied by using Small Angle X-Ray Scattering and thermal analysis techniques. We demonstrate that compared to a chemical precipitation route, this colloidal sol-gel process allows the nanostructure of the material to be controlled due to the formation of primary nanoparticles. The presence of these nanoparticles makes possible the specific determination of the zirconia crystallographic phase through an accurate control of the nanostructure during the thermal treatment.  相似文献   

12.
We report in this article a comprehensive investigation of the viscoelastic behavior of different natural colloidal clay minerals in aqueous solution. Rheological experiments were carried out under both dynamic and steady-state conditions, allowing us to derive the elasticity and yield stress. Both parameters can be renormalized for all sizes, ionic strength, and type of clay using in a first approach only the volume of the particles. However, applying such a treatment to various clays of similar shapes and sizes yields differences that can be linked to the repulsion strength and charge location in the swelling clays. The stronger the repulsive interactions, the better the orientation of clay particles in flows. In addition, a master linear relationship between the elasticity and yield stress whose value corresponds to a critical deformation of 0.1 was evidenced. Such a relationship may be general for any colloidal suspension of anisometric particles as revealed by the analysis of various experimental data obtained on either disk-shaped or lath- and rod-shaped particles. The particle size dependence of the sol-gel transition was also investigated in detail. To understand why suspensions of larger particles gel at a higher volume fraction, we propose a very simplified view based on the statistical hydrodynamic trapping of a particle by an another one in its neighborhood upon translation and during a short period of time. We show that the key parameter describing this hydrodynamic trapping varies as the cube of the average diameter and captures most features of the sol-gel transition. Finally, we pointed out that in the high shear limit the suspension viscosity is still closely related to electrostatic interactions and follows the same trends as the viscoelastic properties.  相似文献   

13.
The electrochemical behavior of riboflavin (RF) adsorbed on different surfaces of inorganic matrices was investigated using modified carbon paste electrodes. Silica gel and sol-gel silica modified with niobium oxide were denominated as (SN) and (SN(sol-gel)), respectively. These materials were treated with a H3PO4 solution to graft phosphate groups and were denominated as (SNP) and (SNP(sol-gel)). The immobilization of RF on these materials indicated a high electrode stability, avoiding leaching out of the electroactive species (RF) from the electrode surface. The values of formal potential (E0') of the adsorbed RF on the different matrices changed from -283 (SNRF) up to -165 mV (SNPRF(sol-gel)) vs SCE in 0.1 moll(-1) NaNO3 solution at pH 7.0. Compared to the E0' for soluble RF, the values are shifted 183 up to 305 mV toward more positive potentials. The stability of the electrodes and the formal potential of the adsorbed RF on different matrices remained constant upon changing the solution pH from 3 to 8. Some kinetic parameters were estimated; indicating that all systems studied presented a good electron transfer rate.  相似文献   

14.
超临界干燥法制备Fe2O3-SiO2气凝胶   总被引:10,自引:0,他引:10  
以正硅酸乙酯(TEOS)和硝酸铁为原料,采用溶胶-凝胶法和超临界干燥工艺制备了Fe2O3-SiO2气凝胶,研究了Fe2O3-SiO2醇凝胶的形成条件的影响,并对所得气凝胶样品结构特性进行了初步表征.所得气凝胶样品是由直径约8nm的胶体粒子构成的低密度、高孔隙率的块状非晶固态材料.  相似文献   

15.
Porous materials with a wide variety of functions can be obtained through sol-gel synthesis. Recently, we found that sol-gel based materials can be molded into a monolithic microhoneycomb structure by simply freezing their parent hydrogels unidirectionally. The main feature of the monoliths obtained through this method, which we named the Ice Templating Method, is that they have straight and aligned macropores, the sizes of which are in the micrometer range. As these macropores are the traces of the ice crystals which are formed during freezing and which practically act as the template, the sizes as well as the shape of them depend on how the template ice crystals are formed and how they grow. Therefore in this work, the growth behavior of the ice crystals formed during the unidirectional freezing of a silica hydrogel was examined and the influences of this growth behavior on the properties of the resulting monoliths were verified.  相似文献   

16.
《Supramolecular Science》1997,4(1-2):147-154
A new approach to nanostructure formation based on replication of an existing pattern of colloidal Au nanoparticles is described. The key steps in this strategy involve the coating of a well-defined Au colloid monolayer with an SiOx sol-gel, HF etching until colloidal particles are exposed, and removal of colloidal Au with aqua regia. This process was carried out on a two-dimensional array of 12nm diameter particles on an In-doped SnO2 (ITO) substrate, and monitored by UV-vis, electrochemistry, and atomic force microscopy (AFM). AFM data indicate the strategy is feasible, with clearly visible differences in surface morphology observed between bare ITO and colloidal Au-depleted, SiOx-coated ITO.  相似文献   

17.
Titania containing catalysts were prepared by conventional procedures (coprecipitation, hydrogel kneading and titania precipitation) and a complexing-agent assisted sol-gel method. The effect of preparation methods on their properties and catalytic activities in the oxidation of olefins and decomposition of cumene hydroperoxide were examined. The sol-gel method gave the best dispersion of titania. In contrast, with the kneading and titania precipitation method, titania formed crystalline particles. The sol-gel catalysts are more effective for epoxydation of olefins because of the high dispersibility of Ti in them. However, the most active catalysts in the decomposition of cumene hydroperoxide are kneading ones.  相似文献   

18.
Two types of non-close-packed colloidal crystal films were prepared by etching the films made of polystyrene nanospheres using a hyperthermal neutral beam of oxygen gas. Etching without sintering above glass transition temperature of the polymer particles resulted in the non-close-packed structure of the nanospheres, in which polystyrene nanospheres in different lattice planes touched each other due to the reduction in the size of the nanospheres that occurred during the etching process. In contrast, a different non-close-packed structure with inter-connecting networks between etched nanospheres was generated by annealing of the colloidal crystal and a subsequent etching process. The photonic bandgap could be tuned during this dry etching of colloidal photonic crystals. This connected open structure could be used as a template for a silica inverse opal by chemical vapor deposition. An alternative dry etching process, reactive ion etching, mainly affected the morphology of particles near the top surface, and only a slight change in the stop band position of the colloidal crystal film was observed.  相似文献   

19.
The phase diagram of a two-dimensional model system for colloidal particles at the air-water interface was determined using Monte Carlo computer simulations in the isothermic-isobaric ensemble. The micrometer-range binary colloidal interaction has been modeled by hard disklike particles interacting via a secondary minimum followed by a weaker longer-range repulsive maximum, both of the order of kBT. The repulsive part of the potential drives the clustering of particles at low densities and low temperatures. Pinned voids are formed at higher densities and intermediate values of the surface pressure. The analysis of isotherms, translational and orientational correlation functions as well as structure factor gives clear evidence of the presence of a melting first-order transition. However, the melting process can be also followed by a metastable route through a hexatic phase at low surface pressures and low temperatures, before crystalization occurs at higher surface pressure.  相似文献   

20.
含铁骨架Fe-Al-EU-1分子筛的设计合成和晶化   总被引:2,自引:0,他引:2  
以溴化六甲双铵(HMBr2)为模板剂,在HMBr2-Na2O-Al2O3-SiO2-Fe2O3-H2O体系中,采用水热法合成了高结晶度Fe-Al-EU-1分子筛,通过X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、热重-微分热重(TG-DTG)分析、N2吸附-脱附、固体核磁共振(NMR)、紫外-可见(UV-Vis)吸收光谱和X射线吸收谱的精细结构(XAFS)等测试手段对合成样品的物理化学性质、铁在分子筛骨架的成键状态进行表征.结果表明:随着原始溶胶中铁的质量分数增加,Fe-Al-EU-1分子筛的晶胞体积增大;铁掺杂使Al-EU-1分子筛的表面积(BET)从272m2·g-1增加到365m2·g-1;模板剂脱除和分解温度降低;铁离子加入溶胶,导致zeta电位降低,胶体粒子容易聚集,分子筛外形增大.UV-Vis结果显示:由于220-250nm处的分子筛骨架中氧原子的成键2p电子向骨架四配位铁原子的空d轨道产生p-d跃迁,导致其特征峰的吸收峰强度急剧增加,在373nm左右骨架位的四配位铁原子与相邻的硅氧基团配位键合,产生能级分裂的d-d电荷跃迁峰且峰强度增加.XAFS结果表明:随着晶化过程的进行,边前1s→3d吸收峰和1s→4p主吸收峰发生了明显变化,原始溶胶样品在形成四配位铁物种结构单元后,逐步转化形成四面体配位的铁-硅-氧骨架铁物种,铁-硅-氧离子键结构单元也随之转变为四面体配位共价键结构的骨架铁物种.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号