首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The water distribution across the membrane electrolyte assembly (MEA) of a working polymer electrolyte fuel cell (PEFC) was observed in situ using neutron radiography. In order to resolve the distribution between the different layers of the MEA, in plane imaging (cell membrane parallel to the beam) was used. Unprecedented spatial resolution for neutron radiography was obtained using a new detector system available at PSI combined with specific anisotropic resolution enhancement methods. A detrimental effect on performance of excessive water content in the cathode GDL was observed. Depending on the operating condition, a strong separation of the water content between ribs and channel was observed, particularly in the cathode GDL.  相似文献   

2.
A Monte Carlo study was carried out to determine the influence of the effective scattering mass (M e) of the atoms on the neutron density profile inside and outside the sample illuminated by a thermal neutron beam as in large-sample prompt-gamma neutron activation analysis (LS-PGNAA). From theory it is known that the spatial neutron density distribution (n(r)) inside a large sample is not the same for atoms with the same macroscopic scattering and absorption cross-section (Σ s and Σ a) but different M e, due to anisotropic scattering at low M e. The probability of neutron absorption in the sample was found to be the same for materials with equal Σ s and Σ a but different M e, even though the neutron density distribution in the sample was found to change slightly. In view of typical sample, collimator and detector dimensions, it is concluded that M e does not need to be taken into account in a correction method for neutron self-shielding in LS-PGNAA.  相似文献   

3.
The aim of this article is to determine the resolution of the neutron diffraction system (NDS) installed around the Algerian Es Salam research reactor. By using a new method based on neutron radiography technique we have measured the beam divergence at the exit of Soller Collimator (α2) and hence determine effective collimations. The determination of the adequate resolution of our NDS is performed on experimental results obtained from neutron diffraction patterns for different collimation divergences (α2) and (α3) values obtained from several apertures sizes (S 2) and (S 3).  相似文献   

4.
This work is about k 0-INAA using unstable neutron flux for sample irradiation. Due to slow transport, each irradiation in the channel DBVK consists of three phases: stable irradiation at the final position, and two additional irradiations during travelling by exposure to an increasing neutron flux in the delivery course and to a decreasing neutron flux in the fetch course. In this work, the neutron flux distribution along this channel was calibrated and the neutron flux variation with irradiation time was calculated, making it possible to evaluate activity growth during a complete irradiation period. The feasibility of the k 0-method was checked by analyses of four SRM-materials and three multi-element standards at three DBVK-positions. An accuracy of better than ±10% was found for nearly all determined elements in each determination.  相似文献   

5.
High resolution neutron radiography was used to observe the time resolved distribution of 2H nuclei in the membrane of an operating polymer electrolyte fuel cell (PEFC) after changing the anode gas from 1H2 to 2H2. The rate of replacement and the distribution of 2H nuclei shortly after the change of the anode gas were found to be independent of the applied current density. This behavior can be explained by a high exchange current density of the hydrogen oxidation reaction (HOR), the uptake of 2H nuclei in the membrane being limited by diffusive transport. A simple calculation as well as qualitative analysis is given to support this explanation.  相似文献   

6.
A method for performing neutron radiography and locally resolved impedance spectroscopy simultaneously in situ in an operating polymer electrolyte fuel cell (PEFC) is presented. The new method provides concurrently spatially resolved information about the local cell performance, the locally limiting processes, and the liquid water distribution. Information about the impact of water on cell performance and limiting processes can be gained in situ on a local scale in an operating PEFC. The method was applied to a PEFC operated on pure H2/O2 in co-flow mode under low humidity operating conditions. The results show that in co-flow mode strong flooding and severe drying can occur at the very same time in different sections of a PEFC.  相似文献   

7.
A subcritical nuclear reactor, Model 9000, Nuclear Chicago, is installed and operating at the Aristotle University of Thessaloniki, in the Atomic and Nuclear Physics Laboratory, at Thessaloniki, Northern Greece. The fuel is about 5500 lbs (2495 kgs) natural uranium metal (U3U8), the moderator about 3600 lbs (1633 kgs) light water, H2O and the reflector is also light, water, H2O. The lattice core is hexagonal, 42 inches (1.07 m) high and of 35 inches (88.90 cm) maximum diameter. The neutron source at the core is Am-Be 5 curies (185 GBq), 1.1·107n·s−1. The reactor is used for the activation of various materials by neutrons such as indium, the determination of the thermal neutrons flux, the horizontal and the vertical distribution of the neutron flux, material buckling, B, and geometric buckling, B, the parameters of the reactor, and the albedo of water for thermal neutrons with foils of indium. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
The response and the functioning of the photosynthetic machinery of cotton, Gossypium hirsutum during water stress was studied by leaf optical properties, linear (ETRII) and cyclic electron flow (CEF) and chlorophyll a fluorescence. We observed that in G. hirsutum, during water limitation, Chlorophyll b showed the best correlation with reflectance at 731 nm and is a better indicator of drought. Fv/Fm was observed to be very insensitive to mild water stress. However, during severe water stress the leaves exhibit considerable inhibition in Fv/Fm and an increase in anthocyanin levels by about 20‐fold. CEF was very responsive to mild water stress. The mild drought stress caused large decrease in the ability of the leaves to utilize the light energy. Photosystem I and photosystem II is protected from photoinhibition by high CEF and nonphotochemical quenching under mild water stress. While during severe drought stress, linear electron flow showed a sharp decrease in comparison to CEF. CEF play a major role in G. hirsutum leaves during mild as well as under severe water stress condition and is thus a good indicator of water stress.  相似文献   

9.
The structure of water-in-oil microemulsion droplets, stabilized by didodecyldimethylammonium bromide (DDAB), has been investigated by small-angle neutron scattering (SANS). Detailed information about the curved surfactant film has been obtained by selectively deuterating the water, DDAB, and cyclohexane components. For each surfactanth-DDAB andd-DDAB and concentration, three sets of complementary neutron contrast data were analyzed together in terms of a Schultz distribution of core–shell particles. The modeling was consistent with a simple liquid-like surfactant layer, of density 0.80 g cm−3, with no evidence for any solvent penetration. This film thickness was found to be 11–12 Å, about 70% of an all-transC12chain length. At the water interface the area per head was 56–61 Å2, while for the alkyl chains at the outer surface it was 90–125 Å2(15–30% lower than that for a truncated cone molecular configuration). The cyclohexane–water interfacial tensions γo/w, measured by surface light scattering, were used along with the droplet polydispersities to find that the rigidity of the DDAB film, 2K+ is close to 1.0kBT. This means that rather than acting as an effective parameter in the SANS analysis, the polydispersity is a natural consequence of the film rigidity. These results show that the film bending energy model accounts well for the behavior of such DDAB microemulsions.  相似文献   

10.
Serum aluminum levels were determined by instrumental neutron activation analysis in 31 patients undergoing long-term haemodialysis. Aluminum-28 1.778 MeV (T 1/2=2.24 min) γ-rays produced by the thermal neutron reaction27Al(n,γ)28Al were detected. Successive irradiation of the samples at epithermal neutron fluence was performed to correct for the interference from the fast neutron reaction31P(n,α)28Al. Serum aluminum level in this group of subjects was adequately represented by a lognormal distribution with a mean and variance of 16.5 μg/l and 16.8 μg/l, respectively. The results obtained were found to be in agreement with serum aluminum determination performed by electrothermal atomic absorption spectrophotometry (r 2=0.97). Instrumental neutron activation can provide a rapid technique to routinely monitor long-term haemodialysis patients in order to identify individuals at greater risk to develop aluminum toxicity.  相似文献   

11.
A method is proposed for the implementation of large-sample prompt-gamma neutron activation analysis (LS-PGNAA). The method was tested with four different sample materials at the thermal PGNAA facility at JAERI, Japan. The macroscopic scattering cross section (Σ s) and absorption cross section (Σ a) of the samples were determined by monitoring the neutron flux in four positions just outside the sample container. With the Σ s and Σ a determined, the spatial neutron density distribution [n(r)] inside the sample material was derived. Taking n(r) and the gamma-ray self-absorption into account simultaneously, the effective geometric gamma-ray detection efficiency for large samples as a function of gamma-ray energy was calculated. Taking silicon as test element, the concentrations found agreed to within 7% with the known concentrations in the four sample materials examined, both when using relative standardization and with absolute standardization.  相似文献   

12.
We report new results from small-angle neutron scattering ond 12-cyclohexane/lecithin/water micellar solutions performed as a function of the water content (w 0), temperature (T) and dispersed phase volume fraction (). The data from dilute samples are interpretable in terms of the existence of giant cylindrical reverse micelles and are well fit with a core-shell model (that provides the micelle structure and dimensions) with values of 28 and 45 Å for the inner core and the outer shell radii, almost independent on temperature and concentration. Such a result could appear consistent with the current idea that worm-like micelles are living polymers. On the contrary, the appearance of a sharp interference maximum at high concentrations (>0.15) suggests arguments against the current hypothesis of an entangled network of giant flexible cylinders. Further arguments against the current hypothesis are given by the close similarity between the above described results and those from free of water micelles (for sure not cylinders). All the data are well fitted in terms of a unique model taking into account the micellar form factor plus a hard sphere structure factor. The data analysis suggests a micellar size distribution determined by the competition between concentration and interaction effects on which temperature plays not a minor role. Following our results, the current hypothesis of a gel structure in terms of an entangled network can be assumed as wrong and some caution has to be taken in assuming wormlike micelles as living polymers.  相似文献   

13.
Neutron imaging is extended rapidly as a means of non-destructive testing (NDT) of materials. Various effective parameters on the image quality are needed to be studied for neutron radiography system with good resolution. In the present study a portable system of neutron radiography has been designed using 241Am–Be neutron source. The effective collimator parameters were calculated to obtain relatively pure, collimated and uniform neutron beam. All simulations were carried out in two stages using MCNPX Monte Carlo code. In the first stage, different collimator configurations were investigated and the appropriate design was selected based on maximum intensity and uniformity of neutron flux at the image plane in the outlet of collimator. Then, the overall system including source, collimator and sample was simulated for achieving radiographic images of standard samples. Normalized thermal neutron fluence of 2.61×10?5 cm?2 per source particle with n/γ ratio of 1.92×105 cm?2 μSv?1 could be obtained at beam port of the designed collimator. Quality of images was assessed for two standard samples, using radiographic imaging capability in MCNPX. The collimated neutron beam in the designed system could be useful in a transportable exposure module for neutron radiography application.  相似文献   

14.
Magnetic resonance imaging (MRI) is a robust tool to monitor oil displacement processes in porous media. Conventional MRI measurement times can be lengthy, which hinders monitoring time‐dependent displacements. Knowledge of the oil and water microscopic distribution is important because their pore scale behavior reflects the oil trapping mechanisms. The oil and water pore scale distribution is reflected in the magnetic resonance T2 signal lifetime distribution. In this work, a pure phase‐encoding MRI technique, spin echo SPI (SE‐SPI), was employed to monitor oil displacement during water flooding and polymer flooding. A k‐t acceleration method, with low‐rank matrix completion, was employed to improve the temporal resolution of the SE‐SPI MRI measurements. Comparison to conventional SE‐SPI T2 mapping measurements revealed that the k‐t accelerated measurement was more sensitive and provided higher‐quality results. It was demonstrated that the k‐t acceleration decreased the average measurement time from 66.7 to 20.3 min in this work. A perfluorinated oil, containing no 1H, and H2O brine were employed to distinguish oil and water phases in model flooding experiments. High‐quality 1D water saturation profiles were acquired from the k‐t accelerated SE‐SPI measurements. Spatially and temporally resolved T2 distributions were extracted from the profile data. The shift in the 1H T2 distribution of water in the pore space to longer lifetimes during water flooding and polymer flooding is consistent with increased water content in the pore space. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Summary The nonideality of the epithermal neutron flux distribution at a reactor site parameter (α) and the thermal-to-epithermal neutron ratio (ƒ) were determined in three typical irradiation positions of the IEA-R1 reactor of IPEN-CNEN/SP, Sao Paulo, Brazil, using the “Cd-ratio for multimonitor” and “bare bi-isotopic monitor” methods, respectively. This characterization is to be used in the k0-method of NAA, recently introduced at the IPEN.  相似文献   

16.
Overshoot of shear stress, σ, and the first normal stress difference, N1, in shear flow was investigated for dilute solutions of polystyrene with very high molecular weight in concentrated solution of low M PS. In the case that the matrix was a nonentangled system, behavior of overshoot was similar to that of dilute solution of high M PS in pure solvent. The magnitudes of shear, γσm and γNm, corresponding to the peaks of σ and N1 lay on the universal functions of γ˙τR, respectively, proposed for dilute solutions in pure solvent. Here τR is the Rouse relaxation time for high M PS in the blend evaluated from dynamic modulus at high frequencies. In the case that the matrix was an entangled system, an additional σ peak was observed at high rates of shear at times corresponding to γσm = 2–3. This peak can be assigned to the motion of low M chains in entanglement network. When the matrix was entangled, stress overshoot was observed even at relatively low rates of shear, say γ˙τR < 10−2. This is probably due to the motion of high M chains in entanglement of all the chains. In this case the γσm and γNm values were higher than those expected for entangled chains of monodisperse polymer in pure solvent. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2043–2050, 2000  相似文献   

17.
Influence of electrode morphology on electrochemical properties of lead dioxide electrodes (β-PbO2) for oxygen-ozone evolution reactions in acid medium was investigated using scanning electronic microscopy (SEM), cyclic voltammetry (CV), polarization curves (PC), and determination of the current efficiency (Φ). Experimental findings revealed that application of high electrodeposition current densities furnishes more rough β-PbO2 films. Surface characteristics were verified by SEM images and the analysis of interfacial pseudo-capacitances and morphology factor (φ). Kinetic study of the overall electrode process (O2 + O3) based on the analysis of the Tafel slope revealed that the electrode morphology and electrolyte composition considerably affect the electrode kinetics. In most cases, the existence of two Tafel slopes distributed in the low and high overpotential domains was observed. Abnormal Tafel slopes (b ≠ 120 mV) obtained for the primary water discharge step during water electrolysis were interpreted considering the apparent charge transfer coefficient (α apa). Optimum conditions for the ozone production were obtained for the less rough β-PbO2 electrode immersed in a sulfuric acid solution (1.0 mol dm−3) containing KPF6 (30 × 10−3 mol dm−3), where the current efficiency of 15 mass % for the ozone production was obtained.  相似文献   

18.
Aggregation behavior in aqueous solution of a series of poly (ethylene glycol) (PEG)-based macromonomers with methacryloyl group as the only hydrophobic segment has been investigated using surface tension, steady-state and time-resolved fluorescence spectroscopy using pyrene as a probe, and small-angle neutron scattering techniques. The general formula of these macromonomers is CH2=C(CH3)–CO–O–Em–CH3, where E is the ethylene glycol unit and m=8 (ME8), 18 (ME18), 49 (ME49), and 120 (ME120). The results indicate that a macromonomer with 8 ethylene glycol units forms as an aggregate above a certain critical concentration, which can be defined as critical aggregation concentration. The observed high value of I1/I3 in pyrene emission spectra at the interface of these aggregates and the inability to scatter a neutron beam by these aggregates indicate that the hydrophobic cluster formed by this macromonomer is remarkably solvated. ME18 has a tendency to aggregate but others do not form any hydrophobic cluster. The homopolymerization behaviors of these macromonomers in an aqueous medium at 70°C are consistent with these possibi- lities.  相似文献   

19.
Total scattering structure factors of per-deuterated methanol and heavy water, CD3OD and D2O, have been determined across the entire composition range as a function of pressure up to 1.2 GPa, by neutron diffraction. The largest variations due to increasing pressure were observed below a scattering variable value of 5 Å−1, mostly as shifts in terms of the positions of the first and second maxima. Molecular dynamics computer simulations, using combinations of all-atom potentials for methanol and various water force fields, were conducted at the experimental pressures with the aim of interpreting neutron diffraction results. The peak-position shifts mentioned above could be qualitatively reproduced by simulations, although in terms of peak intensities, the accord between neutron diffraction and molecular dynamics was much less satisfactory. However, bearing in mind that increasing pressure must have a profound effect on repulsive forces between neighboring molecules, the agreement between experiment and computer simulation can certainly be termed as satisfactory. In order to reveal the influence of changing pressure on local intermolecular structure in these “simplest of complex” hydrogen-bonded liquid mixtures, simulated structures were analyzed in terms of hydrogen bond-related partial radial distribution functions and size distributions of hydrogen-bonded cyclic entities. Distinct differences between pressure-dependent structures of water-rich and methanol-rich composition regions were revealed.  相似文献   

20.
An exotherm, observed in differential scanning calorimetry (DSC) scans of amorphous food materials above their glass transition temperature,T g, may occur due to sugar crystallization, nonenzymatic browning, or both. In the present study, this exothermal phenomenon in initially anhydrous skim milk and lactose-hydrolyzed skim milk was considered to occur due to browning during isothermal holding at various temperatures above the initialT g. The nonenzymatic, Maillard browning reaction produces water that in amorphous foods, may plasticize the material and reduceT g. The assumption was that quantification of formation of water from theT g depression, which should not be observed as a result of crystallization under anhydrous conditions, can be used to determine kinetics of the nonenzymatic browning reaction. The formation of water was found to be substantial, and the amount formed could be quantified from theT g measured after isothermal treatment at various temperatures using DSC. The rate of water formation followed zero-order kinetics, and its temperature dependence well aboveT g was Arrhenius-type. Although water plasticization of the material occurred during the reaction, and there was a dynamic change in the temperature differenceTT g, the browning reaction was probably diffusioncontrolled in anhydrous skim milk in the vicinity of theT g of lactose. This could be observed from a significant increase in activation energy. The kinetics and temperature dependence of the Maillard reaction in skim milk and lactose-hydrolyzed skim milk were of similar type well above the initialT g. The difference in temperature dependence in theT g region of lactose, but above that of lactose-hydrolyzed skim milk, became significant, as the rate in skim milk, but not in lactose-hydrolyzed skim milk, became diffusion-controlled. The results showed that rates of diffusion-controlled reactions may follow the Williams-Landel-Ferry (WLF) equation, as kinetic restrictions become apparent within amorphous materials in reactions exhibiting high rates at the same temperature under non-diffusion-controlled conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号