首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mass-selected antimony cluster ions Sb n + (n = 3-12) and bismuth cluster ions Bi {ntn} + (n = 3-8) are allowed to collide with the surface of highly oriented pyrolytic graphite at energies up to 350 eV. The resulting fragment ions are analysed in a time-of-flight mass spectrometer. Two main fragmentation channels can be identified. At low impact energies both Sb n + and Bi n + cluster ions lose neutral tetramer and dimer units upon collision. Above about 150 eV impact energy Sb 3 + becomes the predominant fragment ion of all investigated antimony clusters. The enhanced stability of these fragment clusters can be explained in the framework of the polyhedral skeletal electron pair theory. In contrast, Bi n + cluster scattering leads to the formation of Bi 3 + , Bi 2 + and Bi+ with nearly equal abundances, if the collision energy exceeds 75 eV. The integral scattering yield is substantially higher in this case as compared to Sb n + clusters.  相似文献   

2.
Quantum chemical ab initio calculations have been performed for the vertical excitation energies and oscillator strengths of all low-lying electronically excited states of small helium cluster ions, He n + ,n=2, ..., 7. The geometrical structures of the ions were fixed at the equilibrium geometries of the respective ground states, for He 4 + and He 5 + also one alternative structure was considered. The low-lying excited states can be classified into two categories: the electronic transition can occur either within the central He 2 + or He 3 + unit or from the peripheral weakly bound He atoms to this unit. The latter transitions are very weak (f≈0.001), closely spaced, with vertical excitation energies of about 5.7 eV. The He 2 + and He 3 + units have strong transitions at 9.93 and 5.55 eV, respectively; these transitions are only slightly blue-shifted if He 2 + or He 3 + are placed as “chromophores” into the centre of a larger He n + cluster. The large difference in the vertical excitation energy of the strong transition should enable an experimental decision of the question whether the cluster ions have He 2 + or He 3 + cores.  相似文献   

3.
The formation of Ar 2 + ions has been investigated by means of the threshold photoelectron photoion coincidence (TPEPICO) technique. Two pathways for the formation of Ar 2 + ions are important. One is a direct path via excitation of Rydberg states of Ar2 with consecutive autoionization. The other path is dissociative ionization of larger argon clusters, in this case argon trimers. These two pathways lead to Ar 2 + ions with different internal energy. The pathways are easily distinguished in the TPEPICO-TOF spectra by the kinetic energy released (KER) in the dissociative ionization. The KER for the reaction Ar 3 + → Ar 2 + + Ar was measured as a function of the photon energy and compared to the KER expected from statistical theory. The agreement is satisfying and confirms that Ar 3 + ions do indeed dissociate at the thermochemical threshold. At higher photon energy the excited2Π(3/2)g state of Ar 3 + is also detected from a second component in the KER. By applying a kinetic energy discrimination it is possible to measure cluster ion spectra in the presence of larger clusters but essentially without interference from the latter.  相似文献   

4.
Cross sections for the production of O 2 ? in charge transfer collisions of fast molecular hydrogen ions (H 2 + , D 2 + , H 3 + , and D 3 + of 10 to 140 keV kinetic energy) with O2 molecules have been determined by means of a time-of-flight mass spectrometer analysing the slow negative product ions from the collisions. Within the measuring accuracy equivelocity H 2 + and D 2 + ions have the same cross sections for the generation of O 2 ? . The projectile velocity dependence curve of the cross section passes through a broad maximum with a peak value of about 6.5×10?18 cm2 around the Bohr velocity (25 keV/u) before showing an asymptotic decrease still within the limited energy range under investigation that is in inverse proportion to the square of velocity. Throughout the examined energy range H 3 + ions yield a cross section which is about 1.4 times larger than that of H 2 + ions of the same velocity. The fragment ion O? has been found to appear with cross sections between 10?19 and 10?18 cm2 upon collisional excitation in the energy range under investigation, with ever decreasing intensity when the energy of the positive hydrogen ions, the proton included, was increased.  相似文献   

5.
Highly monochromatized electrons (with 30 meV FWHM) are used in a crossed beams experiment to investigate electron attachment to oxygen clusters (O2)n at electron energies from approximately zero eV up to 2 eV. At energies close to zero the attachment cross section for the reaction (O2)n +e → O 2 ? varies inversely with the electron energy, indicative of s-wave electron capture to (O2)n. Peaks in the attachment cross section present at higher energies can be ascribed to vibrational levels of the oxygen anion. The vibrational spacings observed can be quantitatively accounted for. In addition electron attachment to mixed oxygen/ozone clusters has been studied in the energy range up to 4 eV. Despite the initially large excess of oxygen molecules in the neutral clusters the dominant attachment products are undissociated cluster ions (O3) m ? including the O 3 ? monomer while oxygen cluster ions (O2) n ? appear with comparatively low intensity.  相似文献   

6.
Cluster ions are produced by ion bombardment of thick metal targets and mass selected in a Wien filter. The unimolecular decomposition of Al n + , Cu n + , Mo n + , W n + , and Pb n + is investigated under UHV conditions. The time evolution of the decay allows a glimpse into the cluster formation/fragmentation process. Highly excited metal cluster ions decompose mainly by evaporating single neutral atoms with rates reaching 100%. The collision induced fragmentation (CIF) of stable mass selected metal cluster ions in a low pressure Ar and O2 gas target will be compared to the unimolecular decay.  相似文献   

7.
The production of H 3 + ions resulting from single collisions of mass-selected ionic hydrogen clusters, H n + (n=9, 25, 31), with helium at high velocity (1.55 times the Bohr velocity) has been studied. A strong double H 3 + ion production resulting from one incident cluster is observed. Moreover, evidence for a triple H 3 + fragment production is presented forn=25 and 31. Thus, in this energy range, the collision gives rise to multifragmentation processes. The formation of H 3 + ions takes place in the fragmentation of the multicharged cluster resulting from the collision.  相似文献   

8.
Fe n + and Pd n + clusters up ton=19 andn=25, respectively, are produced in an external ion source by sputtering of the respective metal foils with Xe+ primary ions at 20 keV. They are transferred to the ICR cell of a home-built Fourier transform mass spectrometer, where they are thermalized to nearly room temperature and stored for several tens of seconds. During this time, their reactions with a gas leaked in at low level are studied. Thus in the presence of ammonia, most Fe n + clusters react by simply adsorbing intact NH3 molecules. Only Fe 4 + ions show dehydrogenation/adsorption to Fe4(NH) m + intermediates (m=1, 2) that in a complex scheme go on adsorbing complete NH3 units. To clarify the reaction scheme, one has to isolate each species in the ion cell, which often requires the ejection of ions very close in mass. This led to the development of a special isolation technique that avoids the use of isotopically pure metal samples. Pd n + cluster ions (n=2...9) dehydrogenate C2H4 in general to yield Pd n (C2H2)+, yet Pd 6 + appear totally unreactive. Towards D2, Pd 7 + ions seem inert, whereas Pd 8 + adsorb up to two molecules.  相似文献   

9.
The formation of cluster ions when hydrogen molecular ions H 2 + and H 3 + are injected into a drift tube filled with helium gas at 4.4 K has been investigated. When H 2 + ions are injected, cluster ions HHe x + (x≦14) are produced. No production of H2He x + ions is observed. When H 3 + ions are injected, cluster ions HHe x + (x≦14) are produced as well as H3He x + (x≦13), and very small signals corresponding to H2He x + (3≦x≦10) are observed. Information on the stability of HHe x + and H3He x + is derived from the drift field dependence of the cluster size distributions. The cluster sizex=13 is found to be a magic number for HHe x + , and for H3He x + ,x=10 and 11.  相似文献   

10.
Both positive and negative phosphorus cluster ions were generated from the laser ablation of a red phosphorus sample. The mass distribution of phosphorus cluster ions was found to be very sensitive to the power density of the ablation laser. The P 7 + species exhibits the highest signal intensity in the recorded mass spectra of bare phosphorus cluster cations, as does P 5 - among the anions. Their special structural stability can be attributed to their planar configuration and their aromatic character. As the phosphorus cluster size increases, the odd/even alternation of the signal intensity becomes more pronounced. For the P n + species with n > 24, the relative abundance varies in the order of 8 and P n + with n = 8k + 1 (k = 3–11) are more intense than their neighbors. For comparison, some binary phosphide cluster ions, including CnP m - , SinP m - , BnP m + and AlnP m + , were produced as well. The mass distribution of binary phosphide cluster ions changes with different components. From analysis of the recorded mass spectra of the phosphide cluster ions, the larger clusters may be in a polyhedral configuration and tend to have all valence electrons paired.  相似文献   

11.
Rare gas ions Ne+, Ar+ and Kr+ are injected into a drift tube which is filled with helium gas and cooled by liquid helium. Helium cluster ions RgHe x + (Rg=Ne, Ar and Kr,x≦14) are observed as products. Information regarding the stability of RgHe x + is obtained from drift field dependence of the size distribution of the clusters, and magic numbers are determined. The magic numbers arex=11 and 13 for NeHe x + andx=12 for ArHe x + and KrHe x + . NeHe x + , Ar+ and Kr+ are proposed as the core ions for NeHe 13 + , ArHe 12 + and KrHe 12 + , respectively.  相似文献   

12.
Optical absorption spectra of cobalt cluster ions, Co n + , and vanadium cluster ions, V n + , were analyzed by a theoretical calculation based on the spin-polarized DV- method, and their electronic and geometric structures were obtained. Relative absorption cross section associated with each electronic transition was calculated; the calculation enables a qualitative comparison of calculated spectrum with a measured one not only in its transition energy but also in its intensity profile. This analysis shows that Co 4 + , Co 3 + , and V 4 + have, respectively, a tetrahedral structure with a bond distance of 2.00Å, an equilateral triangle with a bond distance of 2.30Å, and a distorted tetrahedral structure with five bonds having a distance of 2.34 Å and one of 2.89Å. The differences in the population between majority and minority spins (spin-difference) evaluated from the electronic structure thus obtained were 2.0, 1.7, and zero per atom in Co 3 + , Co 4 + , and V 4 + , respectively. These spin differences indicate a ferromagnetic and an antiferromagnetic spin-coupling in the cobalt and vanadium cluster ions, respectively.  相似文献   

13.
Low energy ion beam techniques have been used to perform a detailed study of the reactions of Al 25 + and Si 25 + with a range of simple molecules (D2, CH4, O2, C2H4, CO and N2). The reactions were studied over a center of mass collision energy range from 0.2eV up to 7eV. Activation barriers for chemisorption onto the clusters were deduced from the experimental results. The activation barriers for chemisorption on Al 25 + and Si 25 + are generally similar and show a qualitative correlation with the electronic properties of the reactant molecule. However, the products of the chemical reactions of Al 25 + and Si 25 + which result from cluster fragmentation are quite different. Si 25 + shows a tendency to undergo fission as observed in a number of recent studies of the dissociation of the bare clusters.  相似文献   

14.
Long-lived (hours to days) silver clusters, Ag 4 2+ , Ag 4 + , Ag 8 2+ , etc., are formed upon the radiation-induced reduction of Ag+ ions in aqueous solutions containing sodium polyphosphate. The efficiency of the cluster formation decreases and the stability of the clusters increase with a rise in the concentration of the polymeric stabilizer. In the course of the aggregation of clusters, their sizes increase, quasi-metallic particles emerge, and the process terminates with the formation of silver nanoparticles. The mechanism of silver nucleation upon the radiation-induced reduction of silver ions in aqueous solutions is discussed.  相似文献   

15.
Reactivity of positively charged cobalt cluster ions (Co n + ,n=2?22), produce by laser vaporization, with various gas samples (CH4, N2, H2, C2H4, and C2H2) were systematically investigated by using a fast-flow reactor. The reactivity of Co n + with the various gas samples is qualitatively consistent with the adsorption rate of the gas to cobalt metal surfaces. Co n + highly reacts with C2H2 as characterized by the adsorption rate to metal surfaces, and it indicates no size dependence. In contrast, the reactions of Co n + with the other gas samples indicate a similar cluster size dependence; atn=4, 5, and 10?15, Co n + highly reacts. The difference can be explained by the amount of the activation energy for chemisorption reaction. Compared with neutral cobalt clusters, the size dependence is almost similar except for Co 4 + and Co 5 + . The reactivity enhancement of Co 4 + and Co 5 + indicates that the cobalt cluster ions are presumed to have an active site for chemisorption atn=4 and 5, induced by the influence of positive charge.  相似文献   

16.
The oxidation of chlorine ions in the system O3 + MnO 4 ? + H+ + Cl? with the formation of Cl2 in the gas phase was studied. The phenomenon of transfer catalysis of the reaction between O3 and Cl? by the MnO 4 ? ion was observed (the products of the reduction of MnO 4 ? by the chlorine ion are oxidized by ozone to recover MnO 4 ? ). The rate of the formation of Cl2 in the O3 + MnO 4 ? + H+ + Cl? system was higher than the sum of the corresponding rates in the oxidation of Cl? by O3 and MnO 4 ? separately. A scheme explaining the trends observed experimentally for the formation of Cl2 and changes in MnO 4 ? concentration was suggested. The formation of MnO 4 ? in the oxidation of Mn3+ with ozone in acid media was studied.  相似文献   

17.
Metastable decay of cluster ions has been discovered only recently. It was noted that one has to take this metastable decay into account when using mass spectrometry to probe neutral clusters, because ion abundance anomalies in mass spectra of rare gas and molecular clusters are caused by delayed metastable evaporation of monomers following ion production. Moreover, it was found that(i) the individual metastable reaction rates k depend strongly on cluster size and cluster ion production pathways and that(ii) there exists experimental evidence (k=k(t)) and a theoretical prediction that a given mass selected cluster ion generated by electron impact ionization of a nozzle expansion beam will comprise a range of metastable decay rates. In addition, it was discovered that metastable Ar cluster ions which lose two monomers in the μs time regime decay via sequential decay series Ar n + *→Ar n?1 + *→Ar n?2 + * with cluster sizes 7≤n≤10 andn=3 (similar results were obtained recently in case of N2 cluster ions). Conversely, the dominant metastable decay channel of Ar 4 + * into Ar 2 + was found to proceed predominantly via a single step fissioning process.  相似文献   

18.
Manganese cluster ions Mn k + (k?60) have been produced by 7 keV Xe ion bombardment and analyzed by a double-focusing mass spectrometer. Discontinuous variations of intensity are found atk=5, 14, 16, 29, 34, 45 and 54. Most of these magic numbers coincide with or differ by only one from those observed in Ar k + . The similarity in magic numbers between Mn k + and Ar k + indicates that the bonding nature in the charged Mn clusters is similar to that in the charged Ar clusters; The polarization force between a positive ion in the center of a cluster and surrounding neutral atoms is dominant binding force.  相似文献   

19.
Fragmentation of sodium cluster ions (Na x + ,x<42) was studied via photoionisation of neutral precursors. Expansions of metal vapor out of cylindrical and conical nozzles yielded supersonic beams with differing cluster compositions. Measurements of photoionisation efficiency curves in the 3–6 eV range for both types of expansion allow quantitative separation of direct ionisation and unimolecular dissociation contributions to specific ion signals. Data for Na 8 + and Na 7 + are analysed to yield lower limits on bond energies. Results obtained for larger clusters are also discussed.  相似文献   

20.
Cluster ions of alloys (Li-Na, Li-Mg) have been produced by a liquid metal ion source (LMIS), and analyzed by mass spectrometry. For the Li-Na system, bimetallic clusters with various compositions were formed, and dominant bimetallic species were Na2Li+, NaLi+, NaLi 2 + and NaLi 8 + with this sequence of ion intensity. These clusters are systems containing 2 or 8 valence electrons except for NaLi+. For the Li-Mg, observed bimetallic clusters were limited to only three species (MgLi+, MgLi 2 + and Mg2Li+), but unexpectedly small multiply charged homonuclear clusters, Mg 2 2+ and Mg 3 2+ , were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号