首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
制备了水溶性磺酸卟啉(TPPS, TMPPS)及其铁配合物(FeTPPS). 以过氧化氢为氧源、 碘钨灯为光源, 水溶性磺酸卟啉可以高效光催化氧化1,5-萘二酚, 产物为5-羟基-1,4-萘二醌. 测定了卟啉的荧光量子产率及寿命, 分析了催化机理. 选择波长在350~650 nm区间内6个波段和功率在0~20 W区间内4种功率的光源, 探索了不同波段及功率的光源对卟啉光催化活性的影响. 研究结果表明, 不同波段的光源对卟啉光催化1,5-萘二酚的催化活性顺序为λ380—385>λ360—370>λ580—585>λ620—630>λ492—577>λ450—470, 该活性顺序与卟啉的紫外-可见吸收密切相关; 当使用相同波段光源时, 卟啉配体催化氧化1,5-萘二酚的反应速率常数与功率呈良好的线性关系; 卟啉铁配合物随着光源功率的增大, 其催化活性与光解程度有直接关系.  相似文献   

2.
The photophysical properties for a series of free-base arylethynyl porphyrins and the corresponding trans-disubstituted tetraphenylporphyrin (H(2)TPP) derivatives lacking arylethynyl functionalities have been studied via electronic absorption and emission spectroscopy in both neutral and diacid forms. Enhanced substituent effects on porphyrin absorption spectra are observed in the arylethynyl porphyrins relative to the H(2)TPP derivatives, owing to the presence of the ethynyl spacer that allows for a coplanar geometry between the porphyrin macrocycle and the appended phenyl substituents. Upon protonation, both series of porphyrins exhibit substantially red shifted absorption and emission spectra and enhanced oscillator strengths, with the magnitude of the spectral shifts being more substantial in the presence of the ethynyl functionalities. Spectral features of the arylethynyl porphyrin bearing p-dimethylamino substituents closely resemble those previously classified as "hyperporphyrin spectra" and are indicative of excited-state charge-transfer character. Protonation of both series of porphyrins results in reduced fluorescence lifetimes and enhanced nonradiative decay rates, and the impact of protonation on these parameters is attenuated in the presence of the arylethynyl functionalities. Our results coupled with previous structural data showing that arylethynyl porphyrins exhibit less structural distortion upon diacid formation relative to H(2)TPP further substantiate the proposal that significant alteration of porphyrin photophysical properties upon diacid formation can be attributed to nonplanar structural distortions induced by protonation.  相似文献   

3.
Two multi‐walled carbon nanotube (MWCNT)‐based nanohybrids, MWCNT–ZnTPP and MWCNT–TPP (TPP=5‐[4‐{2‐(4‐formylphenoxy)‐ ethyloxy}phenyl]‐10,15,20‐triphenylporphyrin, ZnTPP=5‐[4‐{(4‐formylphenyl)ethynyl}phenyl]‐10,15,20‐triphenylporphinatozinc(II)), were prepared directly from pristine MWCNTs through 1,3‐dipolar cycloaddition reactions. Covalent attachment of the porphyrins to the surfaces of the MWCNTs was confirmed by Fourier transform infrared spectroscopy, ultraviolet/visible absorption, fluorescence, Raman, and X‐ray photoelectron spectroscopy, elemental analysis, transmission electron microscopy, and thermogravimetric analysis. Attachment of the porphyrin moieties to the surface of the MWCNTs significantly improves the solubility and ease of processing of these MWCNT–porphyrin composite materials. Z‐scan studies reveal that these MWCNT–porphyrin nanohybrids exhibit enhanced nonlinear optical properties under both nanosecond and picosecond laser pulses at λ=532 nm in comparison with free MWCNTs and the free porphyrin chromophores, whereas superior optical limiting performance was displayed by MWCNT–porphyrin composite materials rather than MWCNTs/ZnTPP and MWCNTs/TPP blends, which is consistent with a remarkable accumulation effect as a result of the covalent linkage between the porphyrin and the MWCNTs.  相似文献   

4.
Nd:YAG laser (355 nm) induced surface modifications in polylactic acid (PLA), and its composites with silver nanoparticles (AgNPs, size range between 120 and 150 nm) with and without additional melamine–formaldehyde-coated short sisal fibers were studied as a function of laser pulse numbers. The AgNP content was varied (100, 300 and 500 ppm), whereas the sisal content kept as constant (9 mass%). The PLA-based systems with a fully amorphous matrix were irradiated with 1–256 laser pulses at a constant fluence of 0.32 µJ µm?2. Changes in the irradiated surfaces were assessed and quantified by light and scanning electron microscopic pictures. Protrusion with bubbling, bubbled protrusion with cratering and crater formation with more or less bubbled ridges were found as characteristic ablation features. Bubbling was traced to entrapped gaseous products of PLA degradation, while the onset of ridges was ascribed to the melt flow of the PLA matrix caused by laser shock waves. The laser irradiation caused damage and ablation highly depended on the actual composition, which influenced the UV absorption at 355 nm, which was measured as well.  相似文献   

5.
Porphyrin derivatives are widely explored and used in photodynamic therapy, for their marvelous therapeutic properties. In order to fill in the gaps of insufficient photosensitizers with near-infrared absorption, three porphyrin molecules, 5,10,15,20-tetrakis(3,4-bis(2-(-2-(2-hydroxyethoxy)ethoxy)ethoxy)benzyl)zinc porphyrin(P1), 5,15-bis(3,4-bis(2-(-2-(2-hydroxyethoxy)ethoxy)ethoxy)benzyl)-10,20-bis(2-(2-(2-(4-ethynylphenoxy)ethoxy)ethoxy)ethanol)zincporphyrin(P2),5,15-bis(3,4-bis(2-(-2-(2-hydroxyethoxy)ethoxy)ethoxy)benzyl)-10,20-N,N-dibutyl-4-ethynylaniline zinc porphyrin(P3), were designed and synthesized targeting for more efficient cancer treatment. Excellent photophysical properties were illustrated by UV–vis absorption and emission spectra with enhanced absorbance between 650 and 750?nm and fluorescence emission within 600–800?nm. Besides, with high 1O2 quantum yield, especially P2 (0.89), all porphyrins were further evaluated in vitro by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay against Hela cells and exhibited negligible dark toxicity and robust phototoxicity. Fluorescence confocal laser microscopy confirmed cellular uptake and diffusion of these porphyrins, therefore demonstrated their potential and promising applications in photodynamic therapy.  相似文献   

6.
— Propionibacterium acnes (P. acnes ), grown on Eagles medium with different pH. were irradiated with monochromatic light in the range 320 to 440 nm. Different pH leads to different porphyrin concentrations in the cells. The light sensitivity of the bacteria was estimated from the reduction in their ability to form colonies after radiation. The sensitivity was highest for the lowest wavelength (320 nm). and decreased continuously with increasing wavelength up to 380 nm. In the region between 380 and 440 nm there was a second maximum (at 415 nm) which corresponds to the maximum absorption ol the fluorescing porphyrins in P. acnes . The sensitivity to 415 nm light was found to be dependent on the endogenous porphyrin concentration in the cells. while the sensitivity to 320 nm radiation was independent of the amount of porphyrin present. These results indicate that porphyrins produced by the bacteria are important for the light sensitivity of these bacteria.  相似文献   

7.
The effect of laser fluence on the characteristics of Cu nanoparticles, prepared by laser ablation method, is investigated experimentally. 1–6 nm Cu nanoparticles were synthesized by the pulsed laser ablation of a high purity copper bulk in acetone. Effect of laser fluence on the size, morphology and structure of produced nanoparticles has been studied. Pulses of a Q-switched Nd:YAG laser of 1,064 nm wavelengths at 7 ns pulse width at different fluences was employed to irradiate the Cu target in acetone. The UV–Vis–NIR absorption spectra of nanoparticles exhibit surface plasmon resonance absorption peak in the visible region. TEM and SEM micrographs indicate that with increasing the laser fluence the average size of spherical Cu nanoparticles is decreased and only the sample which is produced with the highest fluence shows exceptional behavior. It is found that Cu nanoparticles exhibit photoluminescence emission with single peak due to its interband transition.  相似文献   

8.
Photoproducts formed from photofrin II in cells   总被引:1,自引:0,他引:1  
Fluorescence and absorption spectra of light-exposed cells containing the tumour-localizing porphyrin preparation Photofrin II (PII) have been studied. Light exposure results in spectral changes that may be due to a photoinduced modification of the porphyrins without breakage of the porphyrin macrocycle and/or to a photoinduced displacement of the porphyrins in the cells. Photochemical reaction involving breakage of the porphyrin macrocycle also occur as can be seen from the loss of absorbance within the Soret band region during light exposure. Singlet oxygen may be involved in the photodegradation of PII in cells since the process is slowed down on bubbling N2 through the samples and is slightly faster in suspensions in Dulbecco's phosphate buffered saline (PBS) made of D2O compared with suspensions in PBS made of H2O. During light exposure a fluorescent product is formed in the cells with fluorescence excitation and emission characteristics similar to those of the "age pigment" lipofuscin (lambda exc = 350 nm, lambda em = 440 nm).  相似文献   

9.
5, 10, 15, Triphenyl-20-p-phenoxy benzoic acid porphyrins (P) containing Zn (ZnP), Ga (GaP), and Si (SiP) were synthesized and conjugated to pluronic-silica (PluS) nanoparticles (NPs) where the fluorescence and singlet oxygen generating behavior of the porphyrins were investigated. The highest singlet oxygen quantum yield (ΦΔ) was obtained for ZnP. When the porphyrins were conjugated to the PluS NPs, the ΦΔ was quenched and fluorescence was enhanced. The pore size of the NPs upon conjugation decreased from 18.9 nm for PluS NPs to 2.4 nm (for ZnP as an example) as determined by applying the Brunauer–Emmett–Teller method. The porphyrin complexes and their conjugates were tested for their photodynamic therapy (PDT) activity on MCF-7 breast cancer cells. It was found that ZnP and its conjugate showed the highest PDT activity. The p > 0.05 indicated that ZnP is significantly different than GaP and SiP.  相似文献   

10.
A novel series of pyrene dendronized porphyrins bearing two and four pyrenyl groups (Py(2)-TMEG1 and Py(4)-TMEG2) were successfully synthesized. First and second generation Fréchet type dendrons (Py(2)-G1OH and Py(4)-G2OH) were prepared from 1-pyrenylbutanol and 3,5-dihydroxybenzyl alcohol. These compounds were further linked to a trimesitylphenylporphyrin containing a butyric acid spacer via an esterification reaction to obtain the desired products. Dendrons and dendronized porphyrins were fully characterized by FTIR and (1)H NMR spectroscopy and their molecular weights were determined by matrix-assisted laser desorption ionization time of flight mass spectrometry. Their optical and photophysical properties were studied by absorption and fluorescence spectroscopies. The formation of dynamic excimers was detected in the pyrene-labeled dendrons, with more excimer being produced in the higher generation dendron. The fluorescence spectra of the pyrene dendronized porphyrins exhibited a significant decrease in the amount of pyrene monomer and excimer emission, jointly with the appearance of a new emission band at 661 nm characteristic of porphyrin emission, an indication that fluorescence resonance energy transfer (FRET) occurred from one of the excited pyrene species to the porphyrin. The FRET efficiency was found to be almost quantitative ranging between 97% and 99% depending on the construct. Model Free analysis of the fluorescence decays acquired with the pyrene monomer, excimer, and porphyrin core established that only residual pyrene excimer formation in the dendrons could occur before FRET from the excited pyrene monomer to the ground-state porphyrin core.  相似文献   

11.
Photobleaching and phototransformation of protoporphyrin IX (PpIX) was investigated in normal mouse skin. The PpIX was induced by topical application of 5-aminolaevulinic acid (ALA). Exposure to laser light (635 nm) caused photobleaching of PpIX fluorescence and formation of fluorescent products. Analysis of the fluorescence spectra revealed appearance of new fluorescent photoproducts during light exposure. The main photoproduct, supposedly chlorin-type photoprotoporphyrin (PPp), exhibited fluorescence with an emission maximum at 675 nm. The other products exhibited main fluorescence peaks at around 588 and 623 nm that can presumably be attributed to an endogenous metallo-porphyrin and water-soluble porphyrin(s), respectively. Our results indicate that light exposure causes alterations in the enzymatic pathway of PpIX synthesis from ALA and leads to accumulation of intermediate water-soluble porphyrins. ALA-induced porphyrins are transported away from the treated area and partly deposited in remote skin sites.  相似文献   

12.
Tetraphenyl porphyrin substituted deoxyuridine was used as a building block to create discrete multiporphyrin arrays via site specific incorporation into DNA. The successful covalent attachment of up to 11 tetraphenyl porphyrins in a row onto DNA shows that there is virtually no limitation in the amount of substituents, and the porphyrin arrays thus obtained reach the nanometer scale (approximately 10 nm). The porphyrin substituents are located in the major groove of the dsDNA and destabilize the duplex by deltaT(m) 5-7 degrees C per porphyrin modification. Force-field structure minimization shows that the porphyrins are either in-line with the groove in isolated modifications or aligned parallel to the nucleobases in adjacent modifications. The CD signals of the porphyrins are dominated by a negative peak arising from the intrinsic properties of the building block. In the single strands, the porphyrins induce stabilization of a secondary helical structure which is confined to the porphyrin modified part. This arrangement can be reproduced by force-field minimization and reveals an elongated helical arrangement compared to the double helix of the porphyrin-DNA. This secondary structure is disrupted above approximately 55 degrees C (T(p)) which is shown by various melting experiments. Both absorption and emission spectroscopy disclose electronic interactions between the porphyrin units upon stacking along the outer rim of the DNA leading to a broadening of the absorbance and a quenching of the emission. The single-stranded and double-stranded form show different spectroscopic properties due to the different arrangement of the porphyrins. Above T(p) the electronic properties (absorption and emission) of the porphyrins change compared to room temperature measurements due to the disruption of the porphyrin stacking at high temperature. The covalent attachment of porphyrins to DNA is therefore a suitable way of creating helical stacks of porphyrins on the nanometer scale.  相似文献   

13.
A series of meta‐substituted fatty acid octaester derivatives and their transition‐metal complexes of meso‐ tetraphenyl porphyrins (TPP‐8OOCR, with R=Cn?1H2n?1, n=8, 12, or 16) have been prepared through very simple synthesis protocols. The thermotropic phase behavior and the liquid crystalline (LC) organization structures of the synthesized porphyrin derivatives were systematically investigated by a combination of differential scanning calorimetry (DSC), polarized optical microscopy (POM), and variable‐temperature small‐angle X‐ray scattering/wide‐angle X‐ray scattering (SAXS/WAXS) techniques. The shorter octanoic acid ester substituted porphyrin (C8‐TPP) did not show liquid crystallinity and its metal porphyrins exhibited an uncommon columnar mesophase. The lauric acid octaester (C12‐TPP) and the palmitic acid octaester (C16‐TPP) series porphyrins generated hexagonal columnar mesophase Colh. Moreover, the metal porphyrins C12‐TPPM and C16‐TPPM with M=Zn, Cu, or Ni, exhibited well‐organized Colh mesophases of broad LC temperature ranges increasing in the order of TPPNi<TPPCu≤TPPZn with their increased effective ionic radii in the square‐planar coordination. The simplicity in synthesis, the well intercolumnar organization of Colh mesophase, the broadness of the discotic LC range, and the specific UV/Vis absorption and fluorescence emission behaviors make the symmetrically substituted fatty acid octaester porphyrins and their metal complexes very attractive for variant applications.  相似文献   

14.
Lai SW  Hou YJ  Che CM  Pang HL  Wong KY  Chang CK  Zhu N 《Inorganic chemistry》2004,43(12):3724-3732
The highly electron-deficient, beta-octafluorinated meso-tetrakis(pentafluorophenyl)-porphyrin (H(2)F(28)TPP) was metalated with platinum to afford the oxidatively robust luminophore [PtF(28)TPP], and its X-ray structure shows that the porphyrin core exists in a slightly saddle-shaped conformation. The absorption spectrum of [PtF(28)TPP] in CH(2)Cl(2) displays a near-UV Soret band (B) at 383 nm (epsilon = 2.85 x 10(5) dm(3) mol(-1) cm(-1)) and two visible Q(1,0) and Q(0,0) bands at 501 (epsilon = 1.45 x 10(4) dm(3) mol(-1) cm(-1)) and 533 (epsilon = 1.36 x 10(4) dm(3) mol(-1) cm(-1)) nm, respectively. These absorption bands of [PtF(28)TPP] are blue-shifted from those in [PtF(20)TPP] (390, 504, and 538 nm, respectively) and [PtTPP] (401, 509, and 539 nm, respectively). Excitation of [PtF(28)TPP] (complex concentration = 1.5 x 10(-6) mol dm(-3)) in dichloromethane at the Soret or Q(1,0) or Q(0,0) band gave a phosphorescence with peak maximum at 650 nm (lifetime = 5.8 micros) and a weak shoulder at 712 nm. Both the emission lifetime and quantum yield vary with solvent polarity, and plots of tau versus E(K) and Phi versus E(K) (where E(K) is the empirical solvent polarity parameter based on the hypsochromic shift of the longest wavelength absorption of the [Mo(CO)(4)[(C(5)H(4)N)HC[double bond]NCH(2)C(6)H(5)]] complex with increasing solvent polarity; see: Kamlet, M. J.; Abboud, J. L. M.; Taft, R. W. Prog. Phys. Org. Chem. 1981, 13, pp 485-630) show linear correlation, indicating that the emission is sensitive to the local environment/medium. Electrochemical studies on [PtF(28)TPP] by cyclic voltammetry showed no porphyrin-centered oxidation at potential < or = 1.5 V versus Ag/AgNO(3), demonstrating that [PtF(28)TPP] is more resistant toward oxidation than [PtF(20)TPP] (E(1/2) = 1.33 V) and [PtTPP] (E(1/2) = 0.97 V). The porphyrin-centered reduction of [PtF(28)TPP] occurs at -0.75 and -1.18 V, which is anodically shifted from those at -1.06 and -1.55 V in [PtF(20)TPP], and -1.51 V in [PtTPP], respectively. The excited-state reduction potential of [PtF(28)TPP] is estimated to be 1.49 V versus Ag/AgNO(3). Over 97% of the emission intensity of [PtF(28)TPP] was retained after irradiation with a high power mercury arc lamp (500 W) for 14 h, compared to 90% and 12% for [PtF(20)TPP] and [PtTPP], respectively; hence, [PtF(28)TPP] exhibits superior photostability. Quenching of the emission of [PtF(28)TPP] by oxygen, alcohol, catechol, and butylamine reveals that [PtF(28)TPP] is an oxidatively robust material with medium-sensitive photoluminescence properties.  相似文献   

15.
Cellulose-based fluorescent materials using Zinc sulphide (ZnS) quantum dot-decorated graphene were prepared by a one-step hydrothermal method. X-ray photoelectron spectroscopy analysis identified the chemical states of Zn, S, C, O, and N in the composite paper. Transmission electron microscopy showed that the graphite oxide was reduced to graphene sheets, and ZnS nanoparticles (<10 nm) were deposited on the surface of these sheets. Scanning electron microscopy indicated that graphene sheets were attached to the surface of paper fibers, and the paper structure and morphology of the fibers were not observably damaged during the hydrothermal reaction. The cellulose-based composite had strong ultraviolet absorption in the range of 200–340 nm, and its main absorption peak was at approximately 296 nm. The band edge emission of photoluminescence spectrum of the composite occurred at 466 nm with an excitation wavelength of 320 nm. The laser scanning confocal microscope image of the composite exhibited an intense blue fluorescence under UV light at 405 nm.  相似文献   

16.
Tetrafunctional porphyrins‐containing trithiocarbonate groups were synthesized by an ordinary esterification method. This tetrafunctional porphyrin (TPP‐CTA) could be used as a chain transfer agent in a controlled reversible addition‐fragmentation chain transfer (RAFT) radical polymerization to prepare well‐defined 4‐arm star‐shaped polymers. N,N‐Diethylacrylamide was polymerized using TPP‐CTA in 1,4‐dioxane. Poly(N,N‐diethylacrylamide) (PDEA) is known to be a thermo‐responsive polymer, and exhibits a lower critical solution temperature (LCST) in water. The star‐shaped PDEA polymer (TPP‐PDEA) was therefore also thermo‐responsive, as expected. The LCST of this polymer depended on its concentration in water, as confirmed by turbidity, dynamic light scattering (DLS), static light scattering (SLS), and 1H NMR measurements. The porphyrin cores were compartmentalized in PDEA shells in aqueous media. Below the LCST, the fluorescence intensity of TPP‐PDEA was about six times larger than that of a water‐soluble low molecular weight porphyrin compound (TSPP), whose fluorescence intensity was independent of temperature. Above the LCST, the fluorescence intensity of TPP‐PDEA decreased, while the intensity was about three times higher than that of TSPP. These observations suggested that interpolymer aggregation occurred due to the hydrophobic interactions of the dehydrated PDEA arm chains above the LCST, with self‐quenching of the porphyrin moieties arising from these interactions. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

17.
Meso-tetra-(p-diazoniumphenyl) porphyrin (TDSPP) can be photolyzed only under anaerobic conditions with a yield of 0.18 during simultaneous irradiation with He-Ne laser light (632.8 nm) and light of the 313 nm line of 0 mercury lamp. The excited singlet state of TDSPP is quenched by externalp-methoxybenzene diazoniumtetra fluoroborate (MeODS) with a rate constant of 9.7 × 109M−1s−1. TDSPP and MeODS interact in the ground state with an equilibrium constant of about 16M−1 and form a fluorescent but photochemically inactive.  相似文献   

18.
A novel triphenylphosphine (TPP) treatment strategy was developed to prepare the near‐infrared emission CsPbI3 nanocrystal (NC)‐polymer composite thin‐film luminescent solar concentrators (LSCs) featuring high absolute photoluminescence quantum yield (PLQY), low reabsorption, and high stability. The PL emission of the LSCs is centered at about 700 nm with 99.4±0.4 % PLQY and narrow full width at half maximum (FWHM) of 75 meV (30 nm). Compared with LSCs prepared with classic CsPbI3 NCs, the stability of the LSCs after TPP treatments has been greatly improved, even after long‐term (30 days) immersion in water and strong mercury‐lamp irradiation (50 mW cm?2). Owing to the presence of lone‐pair electrons on the phosphorus atom, TPP is also used as a photoinitiator, with higher efficiency than other common photoinitiators. Large‐area (ca. 75 cm2) infrared LSCs were achieved with a high optical conversion efficiency of 3.1 % at a geometric factor of 10.  相似文献   

19.
Aggregation behavior of water soluble porphyrins, 5-(1-(4-carboxybutyl) pyridinum-4-yl) 10,15,20-tris (1-methylpyridinium-4-yl) porphyrin (5-CBPyP) in the presence of various concentrations of calf thymus DNA (ct-DNA) and sodium chloride were studied in comparison with meso-tetrakis (4-N-methyl pyridinum) porphyrin (TMPyP), by optical absorption, fluorescence and resonance light scattering (RLS) spectroscopies. Both porphyrins obey Beer’s law in extended range of concentration. Optical absorption and RLS measurements demonstrated nonaggregation for both porphyrins under increasing concentration of ct-DNA and NaCl. However, in comparison, 5-CBPyP had less tendency for aggregation that may be taken as an advantage for its probable application in photodynamic therapy of cancer. The trend of changes in absorption spectra of both porphyrins in the presence of ct-DNA indicates the homogeneous intercalation binding mode. The values of (2.81 ± 0.28) × 106 M?1 and (0.95 ± 0.09) × 106 M?1 were obtained for apparent binding constant of TMPyP and 5-CBPyP from analysis of optical absorption data, respectively. This indicates the less affinity of 5-CBPyP to ct-DNA in comparison with TMPyP. The binding of both porphyrins to ct-DNA quenches fluorescence emission of Ethidium bromide (EB) that is bound to ct-DNA. The quenching process obeys linear Stern-Volmer relationship indicating the displacement of EB from its binding sites by these porphyrins. The results of this technique also represent the intercalation mode of binding for both porphyrins and higher binding affinity of TMPyP compared with 5-CBPyP.  相似文献   

20.
Standard in vitro analyses determining the activity of different compounds included in the chemotherapy of colon cancer are currently insufficient. New ideas, such as photodynamic therapy (PDT), may bring tangible benefits. The aim of this study was to show that the biological activity of selected free-base and manganese (III) metallated porphyrins differs in the limitation of colon cancer cell growth in vitro. White light irradiation was also hypothesized to initiate a photodynamic effect on tested porphyrins. Manganese porphyrin (>1 μM) significantly decreased the viability of the colon tumor and normal colon epithelial cells, both in light/lack of light conditions, while decreasing a free-base porphyrin after only 3 min of white light irradiation. Both porphyrins interacted with cytostatics in an antagonistic manner. The manganese porphyrin mainly induced apoptosis and necrosis in the tumor, and apoptosis in the normal cells, regardless of light exposure conditions. The free-base porphyrin conducted mainly apoptosis and autophagy. Normal and tumor cells released low levels of IL-1β and IL-10. Tumor cells released a low level of IL-6. Light conditions and porphyrins were influenced at the cytokine level. Tested manganese (III) metallated and free-base porphyrins differ in their activity against human colon cancer cells. The first showed no photodynamic, but a toxic activity, whereas the second expressed high photodynamic action. White light use may induce a photodynamic effect associated with porphyrins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号