首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron solvation in water clusters following charge transfer from iodide   总被引:1,自引:0,他引:1  
The dynamics following charge transfer to solvent from iodide to a water cluster are studied using time-resolved photoelectron imaging of I-(H2O)n and I-(D2O)n clusters with n< or =28. The results show spontaneous conversion, on a time scale of approximately 1 ps, from water cluster anions with surface-bound electrons to structures in which the excess electron is more strongly bound and possibly more internalized within the solvent network. The resulting dynamics provide valuable insight into the electron solvation dynamics in water clusters and the relative stabilities between recently observed isomers of water cluster anions.  相似文献   

2.
We have measured the photoelectron-spectra of I? (H2O)n clusters in the size range n=1–60. We have found that the first six water molecules form a solvation layer with an average 0.35 eV electrostatic stabilization of the anion. At larger cluster sizes the electrostatic stabilization of water does not fit a continuous dielectric solvent. The most stable structures of the clusters consist of internally solvated anions. In the size range n=34–40 we have found evidence for existence of cluster structures with surface solvated anions.  相似文献   

3.
The dissociation of hydrogen bromide in a small water cluster (H2O)n (n=3–5) has been studied with quantum chemical methods. The dynamics of dissociation was followed by classical molecular dynamics, and stationary points were studied in order to compute the free energy change associated with the ionization process. The nudged elastic band method was used to map out the energy profile of the reaction paths. The results show that HBr can dissociate in the presence of just four water molecules if they are in the correct configuration.The relation of our results to recent experiments is discussed.  相似文献   

4.
A detailed study has been undertaken of the gas-phase chemistry of [Cu(H2O)N]2+ and [Cu(NH3)N]2+ complexes. Ion intensity distributions and fragmentation pathways (unimolecular and collision-induced) have been recorded for both complexes out as far as N=20. Unimolecular fragmentation is dominated by Coulomb explosion (separation into two single charged units) on the part of the smaller ions, but switches to neutral molecule loss for N>7. In contrast, collisional activation promotes extensive electron capture from the collision gas, with the appearance of particular singly charged fragment ions being sensitive to the size and composition of the precursor. The results show clear evidence of the unit [Cu(X)8]2+ being of special significance, and it is proposed that the hydrogen-bonded structure associated with this ion is responsible for stabilizing the dipositive charge on Cu2+ in aqueous solution.  相似文献   

5.
In continuing previous studies of the solvation behavior of electrolytes in nonaqueous media, a series of tetraalkylammonium tetraphenylborates, cesium and rubidium tetraphenylborates, tetraalkylammonium perchlorates, and tetraphenylarsonium chloride were investigated by proton magnetic resonance spectroscopy in 3-methyl-2-oxazolidone, a solvent with high dielectric constant, high polarity, and wide liquid range. In this study, as in a previous investigation, it was found that salt solutions containing the tetraphenylborate anion were found to shift the proton peaks upfield, indicating an increase in electron density around solvent protons. In this study the same effect has been noted for tetraphenylborate as well as tetraphenylarsonium ion and is attributed to the large diamagnetic anisotropy of the aromatic solute molecules which results in circulation of electrons induced by the magnetic field. This ring current causes shielding of the solvent protons, and the shielding increases as the concentration of aromatic solute increases, resulting in upfield morement of chemical shift irrespective of whether the aromatic moiety is the cation or anion.  相似文献   

6.
7.
8.
We have used ultrafast time-resolved photoelectron imaging to measure charge transfer dynamics in iodide-doped acetonitrile clusters I(-)(CH(3)CN)(n) with n = 5-10. Strong modulations of vertical detachment energies were observed following charge transfer from the halide, allowing interpretation of the ongoing dynamics. We observe a sharp drop in the vertical detachment energy (VDE) within 300-400 fs, followed by a biexponential increase that is complete by approximately 10 ps. Comparison to theory suggests that the iodide is internally solvated and that photodetachment results in formation of a diffuse electron cloud in a confined cavity. We interpret the initial drop in VDE as a combination of expansion of the cavity and localization of the excess electron on one or two solvent molecules. The subsequent increase in VDE is attributed to a combination of the I atom leaving the cavity and rearrangement of the acetonitrile molecules to solvate the electron. The n = 5-8 clusters then show a drop in VDE of around 50 meV on a much longer time scale. The long-time VDEs are consistent with those of (CH(3)CN)(n)(-) clusters with internally solvated electrons. Although the excited-state created by the pump pulse decays by emission of a slow electron, no such decay is seen by 200 ps.  相似文献   

9.
Zeolites are unique in that they can play host to a large number of alkali-metal clusters of the type Mn +p hitherto unseen in any other system. When isolated, these clusters behave as color centers. The alkali ions reside in ionic sites within the cavities and so the nature of the cluster is very much a function of the zeolite host, the Si:Al ratio, and the method chosen to prepare the cluster. Since these centers are created within zeolite cages rather than as structural defects (as is the case with the alkali halides) high cluster concentrations can be achieved at which point the optical and magnetic properties of the zeolite change profoundly. We review experimental work in this area, as well as our own attempts to understand both the electronic and optical properties of these systems in terms of an electron solvation model.  相似文献   

10.
The kinetic shift that exists between two competing unimolecular fragmentation processes has been used to establish whether or not gas-phase Mn(2+) exhibits preferential solvation when forming mixed clusters with water and methanol. Supported by molecular orbital calculations, these first results for a metal dication demonstrate that Mn(2+) prefers to be solvated by methanol in the primary solvation shell.  相似文献   

11.
Frischkorn C  Zanni MT  Davis AV  Neumark DM 《Faraday discussions》2000,(115):49-62; discussion 79-102
Femtosecond photoelectron spectroscopy (FPES) is used to monitor the dynamics associated with the excitation of the charge-transfer-to-solvent (CTTS) precursor states in I-(NH3)n = 4-15 clusters. The FPE spectra imply that the weakly bound excess electron in the excited state undergoes partial solvation via solvent rearrangement on a time scale of 0.5-2 ps, and this partially solvated state decays by electron emission on a 10-50 ps time scale. Both the extent of solvation and the lifetimes increase gradually with cluster size, in contrast to the more abrupt size-dependent effects previously observed in I-(H2O)n clusters.  相似文献   

12.
The infrared spectroscopy of molecules, complexes, and molecular aggregates dissolved in superfluid helium clusters, commonly called HElium NanoDroplet Isolation (HENDI) spectroscopy, is an established, powerful experimental technique for extracting high resolution ro-vibrational spectra at ultra-low temperatures. Realistic quantum simulations of such systems, in particular in cases where the solute is undergoing a chemical reaction, require accurate solute-helium potentials which are also simple enough to be efficiently evaluated over the vast number of steps required in typical Monte Carlo or molecular dynamics sampling. This precludes using global potential energy surfaces as often parameterized for small complexes in the realm of high-resolution spectroscopic investigations that, in view of the computational effort imposed, are focused on the intermolecular interaction of rigid molecules with helium. Simple Lennard-Jones-like pair potentials, on the other hand, fall short in providing the required flexibility and accuracy in order to account for chemical reactions of the solute molecule. Here, a general scheme of constructing sufficiently accurate site-site potentials for use in typical quantum simulations is presented. This scheme employs atom-based grids, accounts for local and global minima, and is applied to the special case of a HCl(H(2)O)(4) cluster solvated by helium. As a first step, accurate interaction energies of a helium atom with a set of representative configurations sampled from a trajectory following the dissociation of the HCl(H(2)O)(4) cluster were computed using an efficient combination of density functional theory and symmetry-adapted perturbation theory, i.e. the DFT-SAPT approach. For each of the sampled cluster configurations, a helium atom was placed at several hundred positions distributed in space, leading to an overall number of about 400,000 such quantum chemical calculations. The resulting total interaction energies, decomposed into several energetic contributions, served to fit a site-site potential, where the sites are located at the atomic positions and, additionally, pseudo-sites are distributed along the lines joining pairs of atom sites within the molecular cluster. This approach ensures that this solute-helium potential is able to describe both undissociated molecular and dissociated (zwitter-) ionic configurations, as well as the interconnecting reaction pathway without re-adjusting partial charges or other parameters depending on the particular configuration. Test calculations of the larger HCl(H(2)O)(5) cluster interacting with helium demonstrate the transferability of the derived site-site potential. This specific potential can be readily used in quantum simulations of such HCl/water clusters in bulk helium or helium nanodroplets, whereas the underlying construction procedure can be generalized to other molecular solutes in other atomic solvents such as those encountered in rare gas matrix isolation spectroscopy.  相似文献   

13.
The formation and stability of aqueous clusters of nitric acid were studied utilizing a free-jet expansion technique, coupled with electron impact ionization mass spectrometry. Evidence for the onset of solvation at very small cluster sizes is presented.  相似文献   

14.
Excited state proton transfer (ESPT) in biologically relevant organic molecules in aqueous environments following photoexcitation is very crucial as the reorganization of polar solvents (solvation) in the locally excited (LE) state of the organic molecule plays an important role in the overall rate of the ESPT process. A clear evolution of the two photoinduced dynamics in a model ESPT probe 1-naphthol (NpOH) upon ultrafast photoexcitation is the motive of the present study. Herein, the detailed kinetics of the ESPT reaction of NpOH in water clusters formed in hydrophobic solvent are investigated. Distinct values of time constants associated with proton transfer and solvent relaxation have been achieved through picosecond-resolved fluorescence measurements. We have also used a model solvation probe Coumarin 500 (C500) to investigate the dynamics of solvation in the same environmental condition. The temperature dependent picosecond-resolved measurement of ESPT of NpOH and the dynamics of solvation from C500 identify the magnitude of intermolecular hydrogen bonding energy in the water cluster associated with the ultrafast ESPT process.  相似文献   

15.
The solvation time correlation function for solvation in liquid water was measured recently. The solvation was found to be very fast, with a time constant equal to 55 fs. In this article we present theoretical studies on solvation dynamics of ionic and dipolar solutes in liquid water, based on the molecular hydrodynamic approach developed earlier. The molecular hydrodynamic theory can successfully predict the ultrafast dynamics of solvation in liquid water as observed from recent experiments. The present study also reveals some interesting aspects of dipolar solvation dynamics, which differs significantly from that of ionic solvation. Dedicated to Prof. C N R Rao on his 60th birthday  相似文献   

16.
17.
Upon photoexcitation of iodide-water clusters, I(-)(H(2)O)(n), an electron is transferred from iodide to a diffuse cluster-supported, dipole-bound orbital. Recent femtosecond photoelectron spectroscopy experiments have shown that, for photoexcited I(-)(H(2)O)(n) (n≥ 5), complex excited-state dynamics ultimately result in the stabilization of the transferred electron. In this work, ab initio molecular dynamics simulations of excited-state I(-)(H(2)O)(5) and (H(2)O)(5)(-) are performed, and the simulated time evolution of their structural and electronic properties are compared to determine unambiguously the respective roles of the water molecules and the iodine atom in the electron stabilization dynamics. Results indicate that, driven by the iodine-hydrogen repulsive interactions, excited I(-)(H(2)O)(5) rearranges significantly from the initial ground-state minimum energy configuration to bind the excited electron more tightly. By contrast, (H(2)O)(5)(-) rearranges less dramatically from the corresponding configuration due to the lack of the same iodine-hydrogen interactions. Despite the critical role of iodine for driving reorganization in excited I(-)(H(2)O)(5), excited-electron vertical detachment energies appear to be determined mostly by the water cluster configuration, suggesting that femtosecond photoelectron spectroscopy primarily probes solvent reorganization in photoexcited I(-)(H(2)O)(5).  相似文献   

18.
Thermodynamic measurements of the solvation of salts and electrolytes are relatively straightforward, but it is not possible to separate total solvation free energies into distinct cation and anion contributions without reference to an additional extrathermodynamic assumption. The present work attempts to resolve this difficulty using molecular dynamics simulations with the AMOEBA polarizable force field and perturbation techniques to directly compute absolute solvation free energies for potassium, sodium, and chloride ions in liquid water and formamide. Corresponding calculations are also performed with two widely used nonpolarizable force fields. The simulations with the polarizable force field accurately reproduce in vacuo quantum mechanical results, experimental ion-cluster solvation enthalpies, and experimental solvation free energies for whole salts, while the other force fields do not. The results indicate that calculations with a polarizable force field can capture the thermodynamics of ion solvation and that the solvation free energies of the individual ions differ by several kilocalories from commonly cited values.  相似文献   

19.
20.
Proton mobility in water clusters   总被引:1,自引:0,他引:1  
Proton mobility in water occurs quickly according to the so-called Grotthuss mechanism. This process and its elementary reaction steps can be studied in great detail by applying suitable mass spectrometric methods to ionic water clusters. Careful choice of suitable core ions in combination with analysis of cluster size trends in hydrogen/deuterium isotope exchange rates allows for detailed insights into fascinating dynamical systems. Analysis of the experiments has been promoted by extensive and systematic quantum chemical model calculations. Detailed low-energy mechanistic pathways for efficient water rearrangement and proton transfer steps, in particular cases along short preformed "wires" of hydrogen bonds, have been identified in consistency with experimental findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号