首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method based upon the tandem use of the Time-Of-Flight and Surface-Induced-Dissociation techniques is proposed for estimating the average cluster size in a neutral molecular beam. It consists of sending the beam through a buffer gas and measuring the variations of the average beam velocity as a function of the buffer gas pressure. The clusters are detected at the mass of the monomer by surface induced dissociation in the ionization source. This method has been applied to an argon cluster beam and the results are in good agreement with determinations using high energy electron diffraction. This technique appears to be a simple alternative for estimating mean cluster sizes in the range of 100 to a few 1000 monomers.  相似文献   

2.
This paper describes the simple experimental method of size determination of gas clusters in molecular beams formed from supersonic jets. Mean cluster size N is calculated from broadening of the transverse profile of beam intensity at a fixed distance behind the skimmer. The described method allows determining the mean sizes of the clusters of any pure gases. It does not require the building of some special models, or determination of empirical constants. Due to the high intensity of the supersonic beams, the measurements do not require any complex highly sensitive equipment. The effectiveness of the present method is validated by measurements in a cluster beams of test gases (easily condensable CO2, Ar, and weakly condensable N2) and the beam of C2H4 (ethylene), formed from a supersonic jet behind conical nozzles. The certainty of measured characteristics is confirmed by the results of numerical simulations. By using the described method the mean cluster sizes from 50 to 2000 molecules per cluster were determined. The correctness of the obtained cluster sizes of CO2 and Ar is proved by comparison with results of other authors, obtained by other experimental methods, and estimations according to the empirical correlations using condensation scaling parameter Г*.  相似文献   

3.
A new method for the production of cold free clusters is presented. A beam of large rare gas clusters is passed through a low pressure atomic gas. The gas atoms are picked up by the rare gas clusters whereby they condense. A complete evaporation of rare gas atoms from the newly formed clusters then follows once the number of captured particles becomes sufficiently large. The method is demonstrated for Xe clusters with size up to 500 atoms per cluster but it should work for most materials, including the refractory materials.  相似文献   

4.
A. Krauss 《Thermochimica Acta》2006,445(2):126-132
A transportable water calorimeter for the determination of the quantity of absorbed dose to water in radiotherapy beams has been developed at the PTB and is presented in detail in this investigation. Heat conduction effects occurring in the calorimeter are studied for different lateral sizes of high-energy photon beams, for different depth dose distributions of electron beams and for a scanned-beam irradiation with a heavy ion beam. The corresponding correction factors are calculated and arguments are given under which conditions these can adequately be applied.  相似文献   

5.
A shock wave model is proposed to explain certain features of recently reported spectra obtained by massive duster impact (MCI) mass spectrometry. It is suggested that clusters that impact glycerol matrices with energies/nucleon in the range 0.01 eV/u < E/N < 1.0 eV/u provide an extremely soft method for sputtering intact biomolecules, Compared to the high energy/nucleon characteristic of atomic or molecular ion primary beams (typically < 50 eV/u), massive cluster primary beams possess much lower energies/nucleon, which are insufficient to cause appreciable ionization and radiation damage of matrix material. Moreover, fragmentation products of parent molecular ions are effectively lower. With these benefits, MCI spectra show lower chemical noise background and enhanced signalto-noise ratios. Rankine-Hugoniot analysis of the shock conditions is used to arrive at an estimate of the heat retained in the collision-affected matrix volume after bombardment by a characteristic cluster. For a cluster collision resulting in a 26.8 GPa shock pressure, by analogy with water data, rapid heating of the shocked volume to 1000 °C or more is plausible. In a beam consisting of clusters distributed in size and charge, an estimate is made for the range of cluster sizes over which hyrodynamic shock wave theory applies.  相似文献   

6.
《Supramolecular Science》1998,5(3-4):239-245
Transmission electron microscopy observation was carried out for nanometric Cr clusters deposited on microgrids at room temperature using plasma–gas-condensation (PGC) method. In order to obtain optimum conditions for monodisperse cluster formation we have studied effects of an Ar gas pressure, an Ar gas flow rate, and a mixing rate of He gas with Ar gas on the size distribution of formed clusters. It has been found that monodisperse clusters with the size rage of 9–13 nm in diameter are producible at a low Ar gas pressure (≤1.3 Torr) and a low Ar gas flow rate (≤600 sccm). The mean cluster size decreases with decreasing Ar gas pressure, while it is not sensitive to the Ar gas flow rate. When He gas is mixed with Ar gas, the mean cluster size further decreases to 6 nm and the cluster beam intensity becomes stronger probably because He gas with the high thermal conductivity enhances supersaturation for cluster nucleation.  相似文献   

7.
This paper reports the formation and characterization of large (Ar) n , (N2) n , and mixed binary (Ar) n (N2) m van der Waals clusters produced at room temperature in the process of supersonic expansion. The average cluster size is determined by the buffer gas induced beam-broadening technique. For both Ar and N2 clusters, power variations of the average cluster size with the gas stagnation pressure P 0 give size scaling as . The average cluster sizes of argon vary from 2950 to more than 30900 atoms per cluster with the argon gas stagnation pressures ranging from 4 to 14 bars, and of nitrogen vary from 600 to more than 10400 molecules per cluster with the nitrogen gas stagnation pressures ranging from 8 to 38 bars. The mixed binary (Ar) n (N2) m cluster is produced by supersonic expansion of an Ar–N2 mixture. The large mixed binary (Ar) n (N2) m clusters with the average sizes n + m between 1000 and 16000 are obtained. In coexpansion of Ar–N2 mixture, we find that the argon concentration becomes higher in the beam than before the expansion. This finding is discussed and may be helpful for further insight into the phenomenon of clustering.  相似文献   

8.
The formation and kinetics of large vapourized-material cluster beams (large size metal clusters) are discussed. The clusters are formed by injecting the vapour of solid state materials into a high vacuum region through a nozzle of a heated crucible. The conditions under which metal clusters form are analysed using nucleation theory. Computer simulation by combining the nucleation and flow equations has also been made. The results show that the theory can be useful in predicting qualitative dependences of metal cluster formation on operation conditions. Several experimental results are also presented, which support the finding that a large size metal cluster is formed by homogeneous nucleation and growth. The advantageous characteristics of ionized cluster beam for thin film formation are also discussed.  相似文献   

9.
The methods to produce and investigate cluster beams have been developed primarily with the use of permanent gases. A summary is given of related work carried out at Marburg and Karlsruhe. The report deals with the effect of carrier gases on cluster beam production; ionization, electrical acceleration and magnetic deflection of cluster beams; the retarding potential mass spectrometry of cluster beams; cluster size measurement by atomic beam attenuation; reflection of cluster beams at solid surfaces; scattering properties of4He and3He clusters; the application of cluster beams in plasma physics, and the reduction of space charge problems by acceleration of cluster ions.  相似文献   

10.
The cluster source we use, a low pressure, rare gas condensation cell, is capable of producing clusters containing more than 45 000 atoms or having masses exceeding 2 500 000 amu. Details of this source and the dependence of the cluster size distribution on adjustable working parameters (oven temperature, inert gas pressure, inert gas type) are discussed in this report. Measurements of the mass-dependent velocity distributions of the clusters emitted by the source are presented and compared to a simple model calculation. The clusters are mass-analyzed with a time-of-flight mass spectrometer and detected by a multi-channel plate. The dependence of the detectability of large clusters on the acceleration voltage is investigated.  相似文献   

11.
Pickup of several molecules, H(2)O, HBr, and CH(3)OH, and Ar atoms on free Ar(N) clusters has been investigated in a molecular beam experiment. The pickup cross sections of the clusters with known mean sizes, ?≈ 150 and 260 were measured by two independent methods: (i) the cluster beam velocity decrease due to the momentum transfer of the picked up molecules to the clusters, and (ii) Poisson distribution of a selected cluster fragment ion as a function of the pickup pressure. In addition, the pickup cross sections were calculated using molecular dynamics and Monte Carlo simulations. The simulations support the results of the velocity measurements. On the other hand, the Poisson distributions yield significantly smaller cross sections, inconsistent with the known Ar(N) cluster sizes. These results are discussed in terms of: (i) an incomplete coagulation of guest molecules on the argon clusters when two or more molecules are picked up; and (ii) the fragmentation pattern of the embedded molecules and their clusters upon ionization on the Ar cluster. We conclude that the Poisson distribution method has to be cautiously examined, if conclusions should be drawn about the cluster cross section, or the mean cluster size ?, and the number of picked up molecules.  相似文献   

12.
G. N. Makarov 《Chemical physics》2003,290(2-3):137-146
A method for generation of intense secondary pulsed molecular beams and beams of radicals of high kinetic energy controllable by a powerful IR laser is described. A pressure shock (shock wave) is used as a source of secondary beams. The pressure shock is formed in interaction between an intense pulsed supersonic molecular beam (or flow) and a solid surface. The characteristics of the secondary beams were studied. Their intensities and the degree of gas cooling in them were shown to be comparable with the corresponding characteristics of the unperturbed primary beam. The acceleration of molecules in the secondary beam is achieved due to vibrational excitation of them by high-power IR laser pulse in the pressure shock and subsequent vibrational to translational (VT) relaxation, which occurs when a gas expands through the orifice into a vacuum. Intense [1020 molecules/(sr s)] beams of SF6 and CF3I molecules with kinetic energies approximately equal to 1.5 and 1.2 eV, respectively, were generated in the absence of carrier gases. The SF6 molecular beams with kinetic energies approximately from 2.5 to 2.7 eV with carrier gases H2, He and CH4 (SF6/carriergas=1/10) were obtained. The possibility of generation of intense beams of cold radicals by this method is demonstrated. The intense beams of cold and accelerated CF3 radicals were generated when the CF3I molecules in the shock were dissociated by high-power CO2 laser radiation. The spectral and energetic characteristics of acceleration of SF6 and CF3I molecules in the secondary beams were studied. The optimal conditions were found for obtaining high-energy molecules.  相似文献   

13.
The emergence of argon-based gas cluster ion beams for SIMS experiments opens new possibilities for molecular depth profiling and 3D chemical imaging. These beams generally leave less surface chemical damage and yield mass spectra with reduced fragmentation compared with smaller cluster projectiles. For nanoscale bioimaging applications, however, limited sensitivity due to low ionization probability and technical challenges of beam focusing remain problematic. The use of gas cluster ion beams based upon systems other than argon offer an opportunity to resolve these difficulties. Here we report on the prospects of employing CO2 as a simple alternative to argon. Ionization efficiency, chemical damage, sputter rate, and beam focus are investigated on model compounds using a series of CO2 and Ar cluster projectiles (cluster size 1000–5000) with the same mass. The results show that the two projectiles are very similar in each of these aspects. Computer simulations comparing the impact of Ar2000 and (CO2)2000 on an organic target also confirm that the CO2 molecules in the cluster projectile remain intact, acting as a single particle of m/z 44. The imaging resolution employing CO2 cluster projectiles is improved by more than a factor of two. The advantage of CO2 versus Ar is also related to the increased stability which, in addition, facilitates the operation of the gas cluster ion beams (GCIB) system at lower backing pressure.
Graphical Abstract ?
  相似文献   

14.
Cryogenically cooled buffer gas beam sources of the molecule thorium monoxide (ThO) are optimized and characterized. Both helium and neon buffer gas sources are shown to produce ThO beams with high flux, low divergence, low forward velocity, and cold internal temperature for a variety of stagnation densities and nozzle diameters. The beam operates with a buffer gas stagnation density of ~10(15)-10(16) cm(-3) (Reynolds number ~1-100), resulting in expansion cooling of the internal temperature of the ThO to as low as 2 K. For the neon (helium) based source, this represents cooling by a factor of about 10 (2) from the initial nozzle temperature of about 20 K (4 K). These sources deliver ~10(11) ThO molecules in a single quantum state within a 1-3 ms long pulse at 10 Hz repetition rate. Under conditions optimized for a future precision spectroscopy application [A. C. Vutha et al., J. Phys. B: At., Mol. Opt. Phys., 2010, 43, 074007], the neon-based beam has the following characteristics: forward velocity of 170 m s(-1), internal temperature of 3.4 K, and brightness of 3 × 10(11) ground state molecules per steradian per pulse. Compared to typical supersonic sources, the relatively low stagnation density of this source and the fact that the cooling mechanism relies only on collisions with an inert buffer gas make it widely applicable to many atomic and molecular species, including those which are chemically reactive, such as ThO.  相似文献   

15.
A coalescence model for homogeneous condensation of ammonia in supersonic expansions to vacuum has been developed using molecular dynamics trajectory calculations. The MD calculations show that the sticking probability increases as the ammonia cluster size increases or the cluster temperature decreases. In addition, the sensitivity of the sticking probability to cluster size decreases as the temperature decreases. Comparison of the Ashgriz-Poo semiempirical coalescence model with MD simulations show that for cluster sizes larger than 100 the former model may be used. To model homogeneous nucleation in an ammonia jet, direct simulation Monte Carlo (DSMC) simulations were performed for different stagnation pressure conditions using the MD simulation outcomes for smaller cluster-cluster collisions and the Ashgriz-Poo model for cluster sizes larger than 100. We found that, by including the combined coalescence model, the average cluster sizes and size distributions predicted by DSMC agree reasonably well with experiment.  相似文献   

16.
This contribution is focused on precise determination of particle size distribution in polymer blends with complex morphology by means of our new program called MDISTR. Standard determination of the particle size distribution is usually achieved by measurement of particle sizes in (a single set of) electron micrographs. We show why this method fails for two frequent cases: (i) blends with very broad particle size distribution and (ii) blends that are composed of domains with different particle sizes. On real-life examples, we demonstrate that program MDISTR yields accurate particle size distributions in both the above-mentioned cases, while the standard image analysis gives average particle sizes differing by >100 % from the correct result. We describe MDISTR calculations which are based on a linear combination of standard particle size distributions from two (or more) sets of micrographs with different magnifications, different locations within the sample and precisely defined statistical weights.  相似文献   

17.
Helium droplets spanning a wide size range, N(He) = 10(3)-10(10), were formed in a continuous-nozzle beam expansion at different nozzle temperatures and a constant stagnation pressure of 20 bars. The average sizes of the droplets have been obtained by attenuation of the droplet beam through collisions with argon and helium gases at room temperature. The results obtained are in good agreement with previous measurements in the size range N(He) = 10(5)-10(7). Moreover, the measurements give the average sizes in the previously uncharacterized range of very large droplets of 10(7)-10(10) atoms. The droplet sizes and beam flux increase rapidly at nozzle temperatures below 6 K, which is ascribed to the formation of droplets within the nozzle interior. The mass spectra of the droplet beam upon electron impact ionization have also been obtained. The spectra show a large increase in the intensity of the He(4) (+) signal upon increase of the droplet size, an effect which can be used as a secondary size standard in the droplet size range N(He) = 10(4)-10(9) atoms.  相似文献   

18.
The utility of a continuous beam of He droplets for the assembly and surface deposition of Ag(N) clusters, ~ 300-6000, is studied with transmission electron microscopy. Images of the clusters on amorphous carbon substrates obtained at short deposition times have provided for a measure of the size distribution of the metal clusters. The average sizes of the deposited clusters are in good agreement with an energy balance based estimate of Ag(N) cluster growth in He droplets. Measurements of the deposition rate indicate that upon impact with the surface the He-embedded cluster is attached with high probability. The stability of the deposited clusters on the substrate is discussed.  相似文献   

19.
IntroductionReactions of metal ions with neutral molecules orclusters produce a variety of metal complex ions andother new series of cluster ions including cations andanions.The laser ablation-molecular beam(LA-MB)method has marked its relevance in the st…  相似文献   

20.
We report for the first time on significant molecular secondary ion yield increases by modifying the chemistry of a water cluster primary ion beam. This was demonstrated using 70-keV ion beams of 0.15 eV/amu. For the neutral drug Bezafibrate, secondary ion yield enhancements ×5–10 were observed when replacing the Ar carrier gas in a water gas cluster ion beam (GCIB) source with a mixture containing 12% CO2 and 2% O2 in Ar. For the cationic drug Ranitidine, the ion yield enhancements using the CO2-containing carrier gas were up to ×20–50 in positive mode and ×2–4 in negative mode. The extent of molecular fragmentation was very similar from both cluster beams. We conclude that additional chemically reactive species are present in the impact zone using the (H2O/CO2)n projectile, which promote the formation of secondary ions of both polarity through projectile impact-induced chemical reactions. This methodology can be applied to further extend the capabilities of high-resolution 3-dimensional mass spectral imaging using reactive GCIB-SIMS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号