首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The renormalized time ordered perturbation approach for the (impurity -) Anderson model with respect to hybridization is combined with a random walk treatment of coherent scattering in order to calculate the one particle excitation spectrum of an Anderson lattice in the Kondo regime. It is found that the Kondo resonance at the Fermi-level splits into two narrow peaks. With decreasing temperature a gap develops in between these peaks due to coherence effects. These results furnish a more rigorous basis for phenomenological theories explaining experimental data in Kondo lattice systems like CeCu2Si2.  相似文献   

2.
We develop a theoretical basis for understanding the spin relaxation processes in Kondo lattice systems with heavy fermions as experimentally observed by electron spin resonance (ESR). The Kondo effect leads to a common energy scale that regulates a logarithmic divergence of different spin kinetic coefficients and supports a collective spin motion of the Kondo ions with conduction electrons. We find that the relaxation rate of a collective spin mode is greatly reduced due to a mutual cancellation of all the divergent contributions even in the case of the strongly anisotropic Kondo interaction. The contribution to the ESR linewidth caused by the local magnetic field distribution is subject to motional narrowing supported by ferromagnetic correlations. The developed theoretical model successfully explains the ESR data of YbRh2Si2 in terms of their dependence on temperature and magnetic field.  相似文献   

3.
The α-γ transition of Ce and its compounds are explained within a compressible Kondo lattice model where the variation of |J|/D with volume is taken into account. We show that, contrary to the valence change model, the Kondo contribution is sufficient to induce a first order transition at low temperature from a magnetic to a Kondo phase. The disappearance of magnetism is then related to an extremely high Kondo temperature. Applications to Ce and CeAl2 cases are given.  相似文献   

4.
李广  汤萍  孙霞  姜勇  陈岳  王胜  黄真  袁松柳 《物理学报》1999,48(3):505-510
实验研究了La2/3Ca1/3Mn1-xCuxO3(x=0和0.15)样品在温度远低于居里温度时的电阻随温度的变化行为.发现未加磁场时,Cu掺杂样品在低温下表现出电阻极小值行为.这一极小值现象在外加磁场后消失.基于Kondo理论,对实验观察进行了讨论,并作了定量的理论与实验的比较. 关键词:  相似文献   

5.
稀磁合金中“电阻极大”现象的双杂质散射理论   总被引:2,自引:0,他引:2       下载免费PDF全文
本文基于s-d相互作用,考虑杂质之间存在RKKY相互作用,提出了一种新的双杂质散射模型。按照这个模型,当一个杂质作自旋翻转散射时,由于杂质之间存在着RKKY关联,它的自旋作为内部自由度会受到限制。由于这种关联,抑制了杂质的自旋翻转散射,结合Kondo的logT项,能形成电阻极大。本文计算了所有可能的“DIS”图(双杂质自能图),在Kondo电阻公式中加入了A/(T02—T2)这样的项。其中A是一个正常数。T0是一个临界温度。当T≤T0时,这个公式不再有意义。这个理论和已有的分子场理论在本质上是不同的.因为它并不依赖于合金中的磁有序.因此当T≥Tc时(Tc是磁有序转变温度),这种机制仍起作用,但分子场理论则不行.这是一种顺磁效应.我们和Cd-Mn(杂质浓度从0.01到0.1at./0)的实验曲线进行了比较,发现符合得很好.最后,我们认为即使在极低浓度下这种机制也是消除Kondo logT发散的主要原因. 关键词:  相似文献   

6.
It has been shown that by distorting a CoPc molecule adsorbed on a Au(111) surface a Kondo effect is induced with a temperature higher than 200 K. We examine a model in which an atom with strong Coulomb repulsion (Co) is surrounded by four atoms on a square (molecule lobes), with two atoms above and below it representing the apex of the STM tip and an atom on the gold surface (all with a single atomic orbital). The Hamiltonian is solved exactly for the isolated cluster, and, after connecting the leads, the conductance is calculated by standard techniques. Quantum interference prevents the existence of the Kondo effect when the orbitals on the square do not interact (undistorted molecule); the Kondo resonance shows up after switching on that interaction. The weight of the Kondo resonance is controlled by the interplay of couplings to the STM tip and the gold surface and between the molecule lobes.  相似文献   

7.
A systematic study of optical and transport properties of the Hubbard model, based on the Metzner-Vollhardt dynamical mean-field approximation, is reviewed. This model shows interesting anomalous properties that are, in our opinion, ubiquitous to single-band strongly correlated systems (for all spatial dimensions greater than one) and also compare qualitatively with many anomalous transport features of the high-T c cuprates. This anomalous behaviour of the normal-state properties is traced to a ‘collective single-band Kondo effect’, in which a quasiparticle resonance forms at the Fermi level as the temperature is lowered, ultimately yielding a strongly renormalized Fermi liquid at zero temperature.  相似文献   

8.
Based on the experimental observation that only the close vicinity of a magnetic impurity at metal surfaces determines its Kondo behavior, we introduce a simple model which explains the Kondo temperatures observed for cobalt adatoms at the (111) and (100) surfaces of Cu, Ag, and Au. Excellent agreement between the model and scanning tunneling spectroscopy experiments is demonstrated. The Kondo temperature is shown to depend on the occupation of the d level determined by the hybridization between the adatom and the substrate with a minimum around single occupancy.  相似文献   

9.
In a recent theory of the noise model of alloys like AuFe a singular point at zero temperature was found to separate a spin glass phase at high concentrations and a Kondo phase at low concentrations. Despite this there is a resistance maximum in both “phases”, although of different characters. In the present letter a relation is given between the temperature of the maximum, Tm, the noise temperature, Δc, and the Kondo temperature, TK. This extends a previously given expression, that is only valid in the spin glass limit Δc >> TK, across the transition at Δc = TK into the Kondo phase and values of Δc less than TK.  相似文献   

10.
We show that the Kondo effect can be induced by an external magnetic field in quantum dots with an even number of electrons. If the Zeeman energy B is close to the single-particle level spacing Delta in the dot, the scattering of the conduction electrons from the dot is dominated by an anisotropic exchange interaction. A Kondo resonance then occurs despite the fact that B exceeds by far the Kondo temperature T(K). As a result, at low temperatures T相似文献   

11.
G. Grüner 《物理学进展》2013,62(6):941-1024
The macroscopic and local properties of 3d transition metal impurities in normal metals are reviewed and compared with the theoretical situation in this field.

The parameters of the Anderson and s-d exchange models are derived from direct and indirect experimental data using as a guide the Hartree-Fock approximation of the non-degenerate Anderson model. The basic observations about the magnetic-non-magnetic transition, and the behaviour of the magnetic, thermal and transport properties when going through the transition region are demonstrated for specific examples. A detailed comparison between the present status of theory and experiment is performed by inspecting the large body of experimental data of two typical alloys, which served as testing materials for the development of the existing theories. CuFe is often regarded as a typical ‘yes moment’ system, and the experiments are therefore compared with the predictions based on the s-d exchange model; in the case of AlMn, the spin-fluctuation concept was chosen as a theoretical basis. It is shown that various approaches of the models fail to describe the fine experimental details. Evidence is presented which calls for a unified theory with no distinction between magnetic (Kondo-type) and non-magnetic (spin-fluctuation) alloys. It is suggested that the range of applicability of a model depends not only on the basic parameters of the dilute alloy but on the temperature, too, and the question of the relevance of the models to the actual state of affairs is to be answered by inspecting the temperature regions where the various approximations of the models are expected to work; the TTK properties are compared with the Kondo approach, the Tˇ-TK properties with the spin fluctuation model, although in the latter case the analysis is based on the concept of a narrow resonance level, which is not a feature of the spin-fluctuation concept only.

Finally, the basic experimental facts and indications are absorbed into a phenomenological model, which describes both the single-particle resonances and the many-body effects involved in resonance formation in classical dilute alloys.  相似文献   

12.
The competition between spin glass (SG), antiferromagnetism (AF) and Kondo effect is studied here in a model which consists of two Kondo sublattices with a Gaussian random interaction between spins in different sublattices with an antiferromagnetic mean J 0 and standard deviation J. In the present approach there is no hopping of the conduction electrons between the sublattices and only spins in different sublattices can interact. The problem is formulated in the path integral formalism where the spin operators are expressed as bilinear combinations of Grassmann fields which can be solved at mean field level within the static approximation and the replica symmetry ansatz. The obtained phase diagram shows the sequence of phases SG, AF and Kondo state for increasing Kondo coupling. This sequence agrees qualitatively with experimental data of the Ce2Au1-x Co x Si3 compound.Received: 9 April 2003, Published online: 9 September 2003PACS: 05.50.+q Lattice theory and statistics; Ising problems - 64.60.Cn Order disorder transformations; statistical mechanics of model systems  相似文献   

13.
14.
In this paper we study the low temperature (T) properties of the Kondo insulator FeSi within the X-boson approach. We show that the ground state of the FeSi is metallic and highly correlated with a large effective mass; the low temperature contributions to the specific heat and the resistivity are of the Fermi-liquid type. The low temperature properties are governed by a reentrant transition into a metallic state, that occurs when the chemical potential crosses the gap and enters the conduction band, generating a metallic ground state. The movement of the chemical potential is due to the strong correlations present in the system. We consider the low temperature regime of the Kondo insulator FeSi, where the hybridization gap is completely open. In this situation we identify the two characteristic temperatures: the coherence temperature T0 and the Kondo temperature TKL. In the range T < T0, we identify a regime characterized by the formation of coherent states and Fermi-liquid behavior of the low temperature properties; in the range TKL > T > T0, we identify a regime characterized by an activation energy. Within the X-boson approach we study those low temperature regimes although we do not try to adjust parameters to recover the experimental energy scales.  相似文献   

15.
Recent advances in scanning tunneling microscopy have allowed the observation of the Kondo effect for individual magnetic atoms. One hallmark of the Kondo effect is a strong temperature-induced broadening of the Kondo resonance. In order to test this prediction for individual impurities, we have investigated the temperature dependent electronic structure of isolated Ti atoms on Ag(100). We find that the Kondo resonance is strongly broadened in the temperature range T = 6.8 K to T = 49.0 K. These results are in good agreement with theoretical predictions for Kondo impurities in the Fermi liquid regime, and confirm the role of electron-electron scattering as the main thermal broadening mechanism.  相似文献   

16.
稀磁合金的杂质互作用效应   总被引:6,自引:0,他引:6       下载免费PDF全文
本文用格林函数方法讨论Tk(Kondo温度)时杂质互作用对Kondo效应的影响。对s-d互作用哈密顿量作自洽场近似时,同时计入导致Kondo效应和产生杂质互作用的切断项,求得了杂质系统的Kondo温度和低温电阻。结果表明:在稀磁合金中,杂质间的互作用效应使Kondo温度下降,并且使T《Tk时的电阻率温度变化曲线由(1-AT2)型变为(1+BT2)型(A,B>0),从而可能在Tk温区产生电阻极大。 关键词:  相似文献   

17.
We study the nonequilibrium regime of the Kondo effect in a quantum dot laterally coupled to a narrow wire. We observe a split Kondo resonance when a finite bias voltage is imposed across the wire. The splitting is attributed to the creation of a double-step Fermi distribution function in the wire. Kondo correlations are strongly suppressed when the voltage across the wire exceeds the Kondo temperature. A perpendicular magnetic field enables us to selectively control the coupling between the dot and the two Fermi seas in the wire. Already at fields of order 0.1 T only the Kondo resonance associated with the strongly coupled reservoir survives.  相似文献   

18.
A quasielastic neutron scattering study has been performed on UCu4+xAl8-x, a system which reveals an alloying-induced transition from magnetic order to heavy-fermion behavior. The magnetic response can be described by a broad quasielastic Lorentzian for all concentrations. No crystal field excitations could be detected. Remarkably, the linewidth decreases with increasing hybridization strength and seems to be no measure of the Kondo lattice temperature T*. In addition, electron spin resonance (ESR) experiments were performed which revealed that, even in the heavy-fermion regime, spin fluctuations play an important role. Both experimental findings are in distinct contrast to cerium-based heavy fermion systems.  相似文献   

19.
This review considers the experimental and theoretical studies of concentrated Kondo systems (CKS), Kondo lattices, substitutional solid solutions and their transition from Kondo impurity to Kondo lattice, and ‘intermediate valence compounds’ which are, in fact, high T K CKS (T K is the Kondo temperature). The anomalous low temperature properties of CKS are related to the formation of the narrow (~k B T K) high-amplitude Abrikosov-Suhl resonance E R in the vicinity of the Fermi level E F. This resonance is situated exactly at E F in low T K CKS with T K < ΔCF and near E F in high T K CKS with T K > ΔCFCF is the crystal field splitting). In low T Kj=1/2’ CKS the condition E R=E F leads to an increase of the density of states at E F, which is large enough to induce heavy fermion superconductivity in CeCu2Si2, UBe13. We demonstrate that the transition from low T K (E R=E F) to high T K CKS (E RE F) might be what was formerly considered as a ‘Kondo-lattice-intermediate valence state’ transition. It appears that in many cases the essentially non-integer valence state of the rare-earth elements in metallic compounds is thermodynamically unstable with respect to a transition to an almost integer valence state, because it realizes the maximum gain in free energy from the Kondo condensation.  相似文献   

20.
Ce 4d-4f resonant angle-resolved photoemission spectroscopy was carried out to study the electronic structure of strongly correlated Ce 4f electrons in a quasi-two-dimensional nonmagnetic heavy-fermion system CeCoGe1.2Si0.8. For the first time, dispersive coherent peaks of an f state crossing the Fermi level, the so-called Kondo resonance, are directly observed together with the hybridized conduction band. Moreover, the experimental band dispersion is quantitatively in good agreement with a simple hybridization-band picture based on the periodic Anderson model. The obtained physical quantities, i.e., coherent temperature, Kondo temperature, and mass enhancement, are comparable to the results of thermodynamic measurements. These results manifest an itinerant nature of Ce 4f electrons in heavy-fermion systems and clarify their microscopic hybridization mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号