首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
连续变量量子态的光学操控   总被引:7,自引:5,他引:2  
量子态的光学操控是指在光场的传输、存储和频率变换等过程中用光学方法对光场的量子态进行操作与控制.量子态操控是量子通讯及量子态制备和应用的基础.在简要介绍连续变量多组份纠缠态光场制备的基础上,概述基于多组份纠缠态光场的连续变量量子通讯网络及在执行压缩态和纠缠态光场操控方面的实验研究进展.  相似文献   

2.
顾斌  李传起  陈玉林 《中国物理 B》2009,18(6):2137-2142
We present a scheme for multiparty quantum remote secret conference (MQRSC) with pure entangled states, not maximally entangled multipartite quantum systems. The conferees first share a private quantum key, a sequence of pure entangled states and then use them to encode and decode the secret messages. The conferees exploit the decoy-photon technique to ensure the security of the transmission of qubits. This MQRSC scheme is more feasible and efficient than others.  相似文献   

3.
In this paper, we propose a protocol to deterministically teleport an unknown mixed state of qubit by utilizing a maximally bipartite entangled state of qubits as quantum channel. Ira non-maximally entangled bipartite pure state is employed as quantum channel, the unknown mixed quantum state of qubit can be teleported with 1 -√ 1- C^2 probability, where C is the concurrence of the quantum channel. The protocol can also be generalized to teleport a mixed state of qudit or a multipartite mixed state. More important purpose is that, on the basis of the protocol, the teleportation of an arbitrary multipartite (pure or mixed) quantum state can be decomposed into the teleportation of each subsystem by employing separate entangled states as quantum channels. In the case of deterministic teleportation, Bob only needs to perform unitary transformations on his single particles in order to recover the initial teleported multipartite quantum state.  相似文献   

4.
Quantum metrology overcomes standard precision limits and has the potential to play a key role in quantum sensing. Quantum mechanics, through the Heisenberg uncertainty principle, imposes limits on the precision of measurements. Conventional bounds to the measurement precision such as the shot noise limit are not as fundamental as the Heisenberg limits, and can be beaten with quantum strategies that employ ‘quantum tricks’ such as squeezing and entanglement. Bipartite entangled quantum states with a positive partial transpose (PPT), i.e., PPT entangled states, are usually considered to be too weakly entangled for applications. Since no pure entanglement can be distilled from them, they are also called bound entangled states. We provide strategies, using which multipartite quantum states that have a positive partial transpose with respect to all bi-partitions of the particles can still outperform separable states in linear interferometers.  相似文献   

5.
Multipartite entangled state is the basic resource for implementing quantum information networks and quantum computation. In this paper, we present the experimental demonstration of the eight-partite two-diamond shape cluster states for continuous variables, which consist of eight spatially separated and entangled optical modes. Eight resource squeezed states of light with classical coherence are produced by four nondegenerate optical parametric amplifiers and then they are transformed to the eight-partite two-diamond shape cluster states by a specially designed linear optical network. Since the spatially separated multipartite entangled state can be prepared off-line, it can be conveniently applied in the future quantum technology.  相似文献   

6.
蔡新华  匡乐满 《中国物理》2002,11(9):876-880
We propose a scheme for generating bipartite and multipartite entangled squeezed states via the Jaynes-Cummings model with large detuning. Bipartite entanglement of these entangled states is quantified by the concurrence. We also use the N-tangle to compute multipartite entanglement of these multipartite entangled squeezed states. Finally we discuss two limiting cases which arise from r→∞ and r→0, in which the multipartite entangled squeezed state reduces correspondingly into an N-qubit Greenberger-Horne-Zeilinger state and an N-qubit W state.  相似文献   

7.
Recently Yang, Chu, and Han [Phys. Rev. A 70 (2004) 022329] presented a new type of multipartite entangled states for implementing efficient many-party controlled teleportation of multiqubit quantum information. Here we propose a simple scheme for preparing such a type of multi-atom entangled states in cavity quantum electrodynamics (QED). The scheme involves atom-cavity interaction with large detuning, and is immune to the cavity decay and the thermal field states. Some practical analyses show its availability with the present technology.  相似文献   

8.
We propose a simple quantum network to detect multipartite entangled states of bosons and show how to implement this network for neutral atoms stored in an optical lattice. We investigate the special properties of cluster states, multipartite entangled states, and superpositions of distinct macroscopic quantum states that can be identified by the network.  相似文献   

9.
A quantum steganography communication scheme via Greenberger-Horne-Zeilinger GHZ 4 state is constructed to investigate the possibility of remotely transferred hidden information.Moreover,the multipartite entangled states are become a hectic topic due to its important applications and deep effects on aspects of quantum information.Then,the scheme consists of sharing the correlation of four particle GHZ4 states between the legitimate users.After insuring the security of the quantum channel,they begin to hide the secret information in the cover of message.Comparing the scheme with the previous quantum steganographies,capacity and imperceptibility of hidden message are good.The security of the present scheme against many attacks is also discussed.  相似文献   

10.
宗晓岚  杨名 《物理学报》2016,65(8):80303-080303
量子纠缠是量子信息的重要物理资源. 然而当量子系统与环境相互作用时, 会不可避免地产生消相干导致纠缠下降, 因此保护纠缠不受环境的影响具有重要意义. 振幅衰减是一种典型的衰减机制. 如果探测环境保证没有激发从系统中流出, 即视为对系统的一种弱测量. 本文基于局域脉冲序列和弱测量, 提出了一种可以保护多粒子纠缠不受振幅衰减影响的有效物理方案, 保护的对象是在量子通信和量子计算中发挥重要作用的Cluster态和Maximal slice态.  相似文献   

11.
Yong-Ting Liu 《中国物理 B》2022,31(5):50303-050303
We present a self-error-rejecting multipartite entanglement purification protocol (MEPP) for N-electron-spin entangled states, resorting to the single-side cavity-spin-coupling system. Our MEPP has a high efficiency containing two steps. One is to obtain high-fidelity N-electron-spin entangled systems with error-heralded parity-check devices (PCDs) in the same parity-mode outcome of three electron-spin pairs, as well as M-electron-spin entangled subsystems (2≤M <N) in the different parity-mode outcomes of those. The other is to regain the N-electron-spin entangled systems from M-electron-spin entangled states utilizing entanglement link. Moreover, the quantum circuits of PCDs make our MEPP works faithfully, due to the practical photon-scattering deviations from the finite side leakage of the microcavity, and the limited coupling between a quantum dot and a cavity mode, converted into a failed detection in a heralded way.  相似文献   

12.
This paper proposes a method of generating multipartite entanglement through using d.c. superconducting quantum interference devices (SQUID) inside a standing wave cavity. In this scheme, the d.c. SQUID works in the charge region. It is shown that, a large number of important multipartite entangled states can be generated by a controllable interaction between a cavity field and qubits. It is even possible to produce entangled states involving different cavity modes based on the measurement of charge qubits states. After such superpositions states are created, the interaction can be switched off by the classical magnetic field through the SQUID, and there is no information transfer between the cavity field and the charge qubits.  相似文献   

13.
A recently introduced family of multipartite entangled states, the 4-qubit phased Dicke states, has been created by 2-photon hyperentanglement. Our experimental method allows high state fidelity and generation rate. By introducing quantum noise in the multipartite system in a controlled way, we have tested the robustness of these states. To this purpose the entanglement of the resulting multipartite entangled mixed states has been verified by using a new kind of structural witness.  相似文献   

14.
It is a simple introduction to quantum entanglement and quantum operations. The authors focus on some applications of quantum entanglement and relations between two-qubit entangled states and unitary operations. It includes remote state preparation by using any pure entangled states, nonlocal operation implementation using entangled states, entanglement capacity of two-qubit gates and two-qubit gates construction. Supported by the National Fundamental Research Program of China (Grant No. 2001CB309306), the National Natural Science Foundation of China (Grant Nos. 60621064 and 10674127) and the Innovation Funds from Chinese Academy of Sciences  相似文献   

15.
Assisted by multipartite entanglement, Quantum information may be split so that the original qubit can be reconstructed if and only if the recipients cooperate. This paper proposes an experimentally feasible scheme for splitting quantum information via W-type entangled states in cavity QED systems, where three-level Rydberg atoms interact with nonresonant cavities. Since W-type states are used as the quantum channel and the cavities are only virtually excited, the scheme is easy to implement and robust against decoherence, and the dependence on the quality factor of the cavities is greatly reduced.  相似文献   

16.
The cluster states and Greenberger-Horne-Zeilinger (GHZ) states are two different types of multipartite quantum entangled states. We present the first experimental results generating continuous variable quadripartite cluster and GHZ entangled states of electromagnetic fields. Utilizing two amplitude-quadrature and two phase-quadrature squeezed states of light and linearly optical transformations, the two types of entangled states for amplitude and phase quadratures of light are experimentally produced. The combinations of the measured quadrature variances prove the full inseparability of the generated four subsystems. The presented experimental schemes show that the multipartite entanglement of continuous variables can be deterministically generated with the relatively simple implementation.  相似文献   

17.
The variety of multipartite entangled states enables numerous applications in novel quantum information tasks. In order to compare the suitability of different states from a theoretical point of view, classifications have been introduced. Accordingly, here we derive criteria and demonstrate how to experimentally discriminate an observed state against the ones of certain other classes of multipartite entangled states. Our method, originating in Bell inequalities, adds an important tool for the characterization of multiparty entanglement.  相似文献   

18.
We propose genuine (k,m)-threshold controlling schemes for controlled teleportation via multi-particle entangled states, where the teleportation of a quantum state from a sender (Alice) to a receiver (Bob) is under the control of m supervisors such that k (k ≤ m) or more of these supervisors can help Bob recover the transferred state. By construction, anyone of our quantum channels is a genuine multipartite entangled state of which any two parts areinseparable. Their properties are compared and contrasted with those of the well-known GHZ, W, and linear cluster states, and also several other genuine multipartite entangled states recently introduced in the literature.  相似文献   

19.
基于N-Λ型原子系统的1→N型分束器   总被引:1,自引:1,他引:0  
分析N-Λ型原子系统的原子极化率,结果表明即使在全共振条件下,EIT效应并不一定产生,介质对信号场的色散和吸收关系与所有场的复拉比频率有关。信号场传播方程的解析分析表明,此系统可以把一束光分成不同频率的N束光,并且其强度和相位是可控的。暗态极化子分析表明它还可以用作1→N量子分束器,产生多体纠缠态。  相似文献   

20.
Comparability of multipartite entanglement   总被引:1,自引:0,他引:1  
We prove, in a multipartite setting, that it is always feasible to exactly transform a genuinely m-partite entangled pure state with sufficient many copies to any other m-partite state via local quantum operation and classical communication. This result affirms the comparability of multipartite entangled pure states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号