首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen bonding in methanol clusters has been investigated by using inner-shell photoabsorption spectroscopy and density functional theory (DFT) calculations in the carbon and oxygen K-edge regions. The partial-ion-yield (PIY) curves of H(CH(3)OH)(n)(+) were measured as the soft x-ray absorption spectra of methanol clusters. The first resonance peak in the PIY curves, which is assigned to the sigma*(O-H) resonance transition, exhibits a 1.20 eV blueshift relative to the total-ion-yield (TIY) curves of molecular methanol in the oxygen K-edge region, while it exhibits a shift of only 0.25 eV in the carbon K-edge region. Decreased intensities of the transitions to higher Rydberg orbitals were observed in the PIY curves of the clusters. The drastic change in the sigma*(O-H) resonance transition is interpreted by the change in the character of the sigma*(O-H) molecular orbital at the H-donating OH site due to the hydrogen-bonding interaction.  相似文献   

2.
Electron attachment to CO? clusters performed at high energy resolution (0.1 eV) is studied for the first time in the extended electron energy range from threshold (0 eV) to about 10 eV. Dissociative electron attachment (DEA) to single molecules yields O(-) as the only fragment ion arising from the well known (2)Π(u) shape resonance (ion yield centered at 4.4 eV) and a core excited resonance (at 8.2 eV). On proceeding to CO? clusters, non-dissociated complexes of the form (CO?)(n)(-) including the monomer CO?(-) are generated as well as solvated fragment ions of the form (CO?)(n)O(-). The non-decomposed complexes appear already within a resonant feature near threshold (0 eV) and also within a broad contribution between 1 and 4 eV which is composed of two resonances observed for example for (CO?)(4)(-) at 2.2 eV and 3.1 eV (peak maxima). While the complexes observed around 3.1 eV are generated via the (2)Π(u) resonance as precursor with subsequent intracluster relaxation, the contribution around 2.2 eV can be associated with a resonant scattering feature, recently discovered in single CO? in the selective excitation of the higher energy member of the well known Fermi dyad [M. Allan, Phys. Rev. Lett., 2001, 87, 0332012]. Formation of (CO?)(n)(-) in the threshold region involves vibrational Feshbach resonances (VFRs) as previously discovered via an ultrahigh resolution (1 meV) laser photoelectron attachment method [E. Leber, S. Barsotti, I. I. Fabrikant, J. M. Weber, M.-W. Ruf and H. Hotop, Eur. Phys. J. D, 2000, 12, 125]. The complexes (CO?)(n)O(-) clearly arise from DEA at an individual molecule within the cluster involving both the (2)Π(u) and the core excited resonance.  相似文献   

3.
The reactivity of the C6F5X (X=F, Cl, Br, I) molecules following low energy (0–15 eV) electron attachment is studied in the gas phase under single collision conditions, free molecular clusters and condensed molecules by means of crossed beams and surface experiments. All four molecules exhibit a very prominent resonance for low energy electron attachment (<1 eV, attachment cross section >10−14 cm2). Under collision free conditions thermal electron capture generates long lived molecular parent anions C6F5X−*. Along the line Cl, Br, I dissociation into X+C6F5 and X+C6F5-increasingly competes until for X=1 only chemical fragmentation is observed on the mass spectrometric time scale. In free molecular clusters chemical fragmentation is quantitatively quenched at low energies in favour of associative attachment yielding undissociated, relaxed ions (C6F5X) n,n≥1. A further dissociative resonance at 6.5 eV in C6F5Cl is considerably enhanched in clusters. If these molecules are finally condensed on a solid surface, one observes a prominent Cl desorption resonance at 6.5 eV. While the quantitative quenching of the chemical reactivity at low energies is due to the additional possibilities of energy dissipation under aggregation, the enhanched reactivity at 6.5 eV is interpreted by the conversion of a core excited open channel resonance in single molecules into a closed channel (Feshbach) resonance when it is coupled to environmental molecules.  相似文献   

4.
The optical response of doubly charged sodium clusters Na n+2 ++ was measured for n = 20, 40, and 58 valence electrons, for which the jellium model predicts spherical clusters. A new experimental scheme was developed which allows to separate doubly charged clusters of even mass from the singly charged with half the mass. The optical spectra are dominated by a plasmon-like resonance which is blue shifted and narrower than that of the singly charged clusters. The smallest doubly charged cluster observed was Na 9 ++ . The photo ionization cross section for singly charged clusters was found to be typically 2.6·10-19cm2 per Na atom for photon energies of around 6 eV, which is a factor of 400 smaller than the maximum in the plasmon absorption in the region of =2.6 eV.  相似文献   

5.
Electronic structure calculations of microhydrated model chromophores (in their deprotonated anionic forms) of the photoactive yellow and green fluorescent proteins (PYP and GFP) are reported. Electron-detachment and excitation energies as well as binding energies of mono- and dihydrated isomers are computed and analyzed. Microhydration has different effects on the excited and ionized states. In lower-energy planar isomers, the interaction with one water molecule blueshifts the excitation energies by 0.1-0.2 eV, whereas the detachment energies increase by 0.4-0.8 eV. The important consequence is that microhydration by just one water molecule converts the resonance (autoionizing) excited states of the bare chromophores into bound states. In the lower-energy microhydrated clusters, interactions with water have negligible effect on the chromophore geometry; however, we also identified higher-energy dihydrated clusters of PYP in which two water molecules form hydrogen-bonding network connecting the carboxylate and phenolate moieties and the chromophore is strongly distorted resulting in a significant shift of excitation energies (up to 0.6 eV).  相似文献   

6.
The molecular structures of neutral Si n Li ( n = 2-8) species and their anions have been studied by means of the higher level of the Gaussian-3 (G3) techniques. The lowest energy structures of these clusters have been reported. The ground-state structures of neutral clusters are "attaching structures", in which the Li atom is bound to Si n clusters. The ground-state geometries of anions, however, are "substitutional structures", which is derived from Si n+1 by replacing a Si atom with a Li (-). The electron affinities of Si n Li and Si n have been presented. The theoretical electron affinities of Si n are in good agreement with the experiment data. The reliable electron affinities of Si n Li are predicted to be 1.87 eV for Si 2Li, 2.06 eV for Si 3Li, 2.01 eV for Si 4Li, 2.61 eV for Si 5Li, 2.36 eV for Si 6Li, 2.21 eV for Si 7Li, and 3.18 eV for Si 8Li. The dissociation energies of Li atom from the lowest energy structures of Si n Li and Si atom from Si n clusters have also been estimated respectively to examine relative stabilities.  相似文献   

7.
This work presents a study of reactions between neutral and negatively charged Au(n) clusters (n=2,3) and molecular hydrogen. The binding energies of the first and second hydrogen molecule to the gold clusters were determined using density functional theory (DFT), second order perturbation theory (MP2) and coupled cluster (CCSD(T)) methods. It is found that molecular hydrogen easily binds to neutral Au(2) and Au(3) clusters with binding energies of 0.55 eV and 0.71 eV, respectively. The barriers to H(2) dissociation on these clusters with respect to Au(n)H(2) complexes are 1.10 eV and 0.59 eV for n=2 and 3. Although negatively charged Au(n) (-) clusters do not bind molecular hydrogen, H(2) dissociation can occur with energy barriers of 0.93 eV for Au(2) (-) and 1.39 eV for Au(3) (-). The energies of the Au(2)H(2) (-) and Au(3)H(2) (-) complexes with dissociated hydrogen molecules are lower than the energies of Au(2) (-)+H(2) and Au(3) (-)+H(2) by 0.49 eV and 0.96 eV, respectively. There is satisfactory agreement between the DFT and CCSD(T) results for binding energies, but the agreement is not as good for barrier heights.  相似文献   

8.
Absolute photoabsorption cross sections have been measured for free, singly ionized sodium clusters in the size range of 48 to 60 atoms. The measurements cover the wavelength interval from 390 to 590 nm (3.2-2.1 eV) in 14 steps. As in a previous series of measurements on smaller clusters, the spectra are dominated by a surface plasma oscillation of the valence electrons, that exhausts 70–80% of the dipole sum rule. The previously observed double structure of the resonance peak is not found, and therefore the interpretation of the profiles in terms of spheroidal deformations becomes more complicated. In this situation we compare the spectra with new calculations of the optical response of deformed clusters by Hirschmann. The calculations, which are made in a local representation of the Random Phase Approximation, agree well with the measured photoabsorption spectra.  相似文献   

9.
Tunable vacuum ultraviolet (VUV) photoionization studies of water clusters are performed using 10-14 eV synchrotron radiation and analyzed by reflectron time-of-flight (TOF) mass spectrometry. Photoionization efficiency (PIE) curves for protonated water clusters (H2O)(n)H+ are measured with 50 meV energy resolution. The appearance energies of a series of protonated water clusters are determined from the photoionization threshold for clusters composed of up to 79 molecules. These appearance energies represent an upper limit of the adiabatic ionization energy of the corresponding parent neutral water cluster in the supersonic molecular beam. The experimental results show a sharp drop in the appearance energy for the small neutral water clusters (from 12.62 +/- 0.05 to 10.94 +/- 0.06 eV, for H2O and (H2O)4, respectively), followed by a gradual decrease for clusters up to (H2O)23 converging to a value of 10.6 eV (+/-0.2 eV). The dissociation energy to remove a water molecule from the corresponding neutral water cluster is derived through thermodynamic cycles utilizing the dissociation energies of protonated water clusters reported previously in the literature. The experimental results show a gradual decrease of the dissociation energy for removal of one water molecule for small neutral water clusters (3 相似文献   

10.
The electron trapping or attachment cross section of carbon dioxide (CO2) condensed as thin films on a spacer of Ar is obtained using a simple model for electron trapping in a molecular film and then charge releasing from the same film by photon absorption. The measurements are presented for different electron exposures and impact energies, film thicknesses, and probing photon energies. The cross section for trapping an electron of incident energy between 0 and 5 eV reveals three different attachment processes characterized by a maximum at about 0.75 eV, a structured feature around 2.25 eV, and a shoulder around 3.75 eV. From the measurement of their dependence with the probing photon energy, the two lowest processes produce traps having a vertical electron binding energy of approximately 3.5 eV, whereas the highest one yields a slightly higher value of approximately 3.7 eV. The 0.75 eV maximum corresponds to the formation of vibrational Feshbach resonances in (CO2)n- anion clusters. The 2.25 eV feature is attributed to the formation of a vibrationally excited 2Piu anion in (CO2)n- clusters, followed by fast decay into its vibrational ground state without undergoing autodetachment. Finally, 3.75 eV shoulder is assigned to the well-known dissociative electron attachment process from 2Piu anion state producing the O- anion in the gas phase and the (CO2)nO- anions in clusters.  相似文献   

11.
The nitrogen K-edge spectra of aqueous proline and diglycine solutions have been measured by total electron yield near-edge X-ray absorption fine structure (NEXAFS) spectroscopy at neutral and high pH. All observed spectral features have been assigned by comparison to the recently reported spectrum of aqueous glycine and calculated spectra of isolated amino acids and hydrated amino acid clusters. The sharp preedge resonances at 401.3 and 402.6 eV observed in the spectrum of anionic glycine indicate that the nitrogen terminus is in an "acceptor-only" configuration, wherein neither amine proton is involved in hydrogen bonding to the solvent, at high pH. The analogous 1s --> sigma(NH) preedge transitions are absent in the NEXAFS spectrum of anionic proline, implying that the acceptor-only conformation observed in anionic glycine arises from steric shielding induced by free rotation of the amine terminus about the glycine CN bond. Anionic diglycine solutions exhibit a broadened 1s --> pi(CN) resonance at 401.2 eV and a broad shoulder resonance at 403 eV, also suggesting the presence of an acceptor-only species. Although this assignment is not as unambiguous as for glycine, it implies that the nitrogen terminus of most proteins is capable of existing in an acceptor-only conformation at high pH. The NEXAFS spectrum of zwitterionic lysine solution was also measured, exhibiting features similar to those of both anionic and zwitterionic glycine, and leading us to conclude that the alpha amine group is present in an acceptor-only configuration, while the end of the butylammonium side chain is fully solvated.  相似文献   

12.
Electron attachment to clusters of acetone (A), trifluoroacetone (TFA) and hexafluoroacetone (HFA) is studied in a crossed beam experiment with mass spectrometric detection of the anionic products. We find that the electron attachment properties in A change dramatically on going from isolated molecules to clusters. While single acetone is a very weak electron scavenger (via a dissociative electron attachment (DEA) resonance near 8.5 eV), clusters of A capture electrons at very low energy (close to 0 eV). The final ionic products consist of an ensemble of molecules (M) subjected to the loss of two neutral H2 molecules ((Mn−2H2), n ≥ 2). Their formation at low energies can only be explained by invoking new cyclic structures and polymers. In clusters of TFA, anionic complexes containing non-decomposed molecules (Mn) including the monomer (M) and ionic products formed by the loss of one and two HF molecules are observed. Loss of HF units is also interpreted by the formation of new cyclic structures in the anionic system. HFA is a comparatively stronger electron scavenger forming a non-decomposed anion via a narrow resonant feature near 0 eV in the gas phase. In HFA clusters, the non-decomposed parent anion is additionally observed at higher electron energies in the range 3–9 eV. The M signal carries signatures of self-scavenging processes, i.e., inelastic scattering by one molecule and capture of the completely slowed down electron by a second molecule within the same cluster. The scavenging spectrum is hence an image of the electronically excited states of the neutral molecule.  相似文献   

13.
New resonance states were discovered for the negative molecular ions of thiophene and selenophene and a series of resonances was found for various heterocyclic compounds in the region 3.0–3.6 eV. The low-energy resonances at 1.65–2.3 eV are formed by a resonance mechanism of a form of the molecular ground state, while an electronically excited Feschbach resonance is responsible for the series of resonance states at 3.0–3.6 eV. The mother state for the latter resonance states is the first triplet state of these molecules. The first triplet state of selenophene is at 3.6±0.15 eV.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 4, pp. 925–927, April, 1990.  相似文献   

14.
Direct two-photon ionization of the matrix has been considered a likely primary ionization mechanism in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. This mechanism requires that the vertical ionization threshold of matrix materials be below twice the laser photon energy. Because dimers and larger aggregates may be numerous in the early stages of the MALDI plume expansion, their ionization thresholds are important as well. We have used two-color two-photon ionization to determine the ionization thresholds of jet cooled clusters of an important matrix, 2,5-dihydroxy benzoic acid (DHB), and mixed clusters with the thermal decomposition product of DHB, hydroquinone. The thresholds of the clusters were reduced by only a few tenths of an eV compared to the monomers, to an apparent limit of 7.82 eV for pure DHB clusters. None of the investigated clusters can be directly ionized by two nitrogen laser photons (7.36 eV), and the ionization efficiency at the thresholds is low.  相似文献   

15.
采用基于密度泛函理论(DFT)的Dmol3程序系统研究了O原子与O2在 Au19与Au20团簇上的吸附反应行为. 结果表明: O在Au19团簇顶端洞位上的吸附较Au20强; 在侧桥位吸附强度相近. O与O2在带负电Au团簇上吸附较强, 在正电团簇吸附较弱. 从O―O键长看, 当金团簇带负电时, O―O键长较长, 中性团簇次之, 正电团簇中O―O键长较短, 因而O2活化程度依次减弱. 电荷布居分析表明, Au团簇带负电时, O与O2得电子数较中性团簇多, 而团簇带正电时, 得电子数较少. 差分电荷密度(CDD)表明, O2与Au团簇作用时, 金团簇失电子, O2的π*轨道得电子, 使O―O键活化. O2在Au19-团簇上解离反应活化能为1.33 eV, 较中性团簇低0.53 eV; 而在Au19+上活化能为2.27 eV, 较中性团簇高0.41 eV, 这与O2在不同电性Au19团簇O―O键活化规律相一致.  相似文献   

16.
Cross sections for electron-impact detachment and electron-impact dissociation of NCO- and NCS- were measured from about 3 to about 40 eV. The former are found to follow a classical prediction with a threshold energy of 9.1 +/- 0.1 eV for NCO- and 8.9 +/- 0.2 eV for NCS-. When the incoming electron binds to the monoanion, a short-lived dianion complex is formed, which is revealed as a resonance in the cross section. For NCO- a resonance is evident at 9.3 +/- 0.2 eV, which implies that the dianion lies above the monoanion by this amount of energy. In the case of NCS- two resonances are evident at 8.4 +/- 0.2 and 19.0 +/- 0.5 eV, respectively. The low-energy NCS dianion is less unstable than the dianion of NCO, which in turn is less unstable than the CN dianion (10-eV resonance). Thus the resonance shifts down in energy with the increasing size of the anion, a fact which is attributed to a decrease in Coulomb energy between the spatially separated electrons.  相似文献   

17.
The following calculations are based on the local density approximation potential (LDA) of W. Ekardt for the spherical jellium-background model (SJBM). Taking into account the smooth shape of the potential, the WKB approximation was used to calculate the energy and angular dependence of the electron scattering cross-sections fo rsmall Na clusters. The number of phase shifts needed to describe the scattering in the range of energies <4.5 eV increases with the size of cluster. The calculated elastic electron scattering cross-sections for the Na clusters, corresponding to the shell closings (8, 20, 40), are exhibiting a pronounced peak structure, correlated with resonance states. The computed peaks of the angular dependences of the cross-sections on energy are shifted to small angles with increasing the cluster size. The absence of fragmentation at these small electron energies presents a challenge for the experimentalists.  相似文献   

18.
In scattering of slow electrons from benzene vapour in addition to the known resonance at 1.1 eV a second resonance at 1.7 eV is discovered, formerly observed only for benzene derivatives. The experimental analysis enables the identification of both resonances as the predicted optically inactive collective π-electron excitations at 1.04 and 1.68 eV of the neutral molecule.  相似文献   

19.
The dissociation dynamics of negative ion resonance states in H(2)S formed upon electron attachment are studied using momentum imaging of the fragment H(-) and S(-) ions and compared with similar resonances in water. The H(-) momentum images show that dissociation dynamics at the 5.2 eV resonance are very similar to those of the 6.5 eV (B(1)) resonance in water. Unlike the 8.5 eV resonance in water, which has A(1) symmetry but is found to display considerable deviation from the axial recoil approximation in the momentum distribution of H(-) ions, the distribution from the corresponding resonance in H(2)S at 7.5 eV is found to follow the axial recoil approximation fairly well. The resonance state with B(2) symmetry at 10 eV is found to decay via four dissociation channels viz.-H(-) + H + S, H(-) + SH(A(2)Σ), H(-) + SH(X(2)Π) and S(-) + H + H channels, similar to those that were seen in the B(2) resonance in water at 12 eV, including sequential fragmentation in the multiple fragmentation channels. However, the angular distributions for the fragment ions from this resonance are found to be distinctly different from those in water, even while displaying considerable deviation from the axial recoil approximation similar to that in water.  相似文献   

20.
Neutral clusters of iron oxide are created by laser ablation of iron metal and subsequent reaction of the gas phase metal atoms, ions, clusters, etc., with an O2/He mixture. The FemOn clusters are cooled in a supersonic expansion and detected and identified in a time-of-flight mass spectrometer following laser ionization at 118 nm (10.5 eV), 193 nm (6.4 eV), or 355 nm (3.53 eV) photons. With 118 nm radiation, the neutral clusters do not fragment because single photon absorption is sufficient to ionize all the clusters and the energy/pulse is approximately 1 microJ. Comparison of the mass spectra obtained at 118 nm ionization (single photon) with those obtained at 193 nm and 355 nm ionization (through multiphoton processes), with regard to intensities and linewidths, leads to an understanding of the multiphoton neutral cluster fragmentation pathways. The multiphoton fragmentation mechanism for neutral iron oxide clusters during the ionization process that seems most consistent with all the data is the loss of one or two oxygen atoms. In all instances of ionization by laser photons, the most intense features are of the forms FemOm+, FemO(m+1)+, and FemO(m+2)+, and this strongly suggests that, for a given m, the most prevalent neutral clusters are of the forms FemOm, FemO(m+1), and FemO(m+2). As the value of m increases, the more oxygen rich neutral clusters appear to increase in stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号