首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[see reaction]. Design and synthesis of a novel class of monodendrons, in which the functional units can potentially be directed toward the concave interiors of dendrimers, are described. The key feature of the design is the placement of the amphiphilic and the AB2 functional groups in orthogonal planes.  相似文献   

2.
In this work, we show that polymer networks composed of tertiary alkyl phosphines can be cleanly functionalized with phosphino-phosphonium or triphosphenium cations. Methods for functionalizing the polymers range from halide abstraction of commercially available reagents, to ligand exchange from simple to make reported compounds, and finally, macromolecular ligand design guided by observations made at the molecular level to accommodate the formation of kinetically favored triphosphenium cation functionalized networks. The synthesis, comprehensive characterization, and comparison of the new polymers to molecular analogues is outlined. It is shown the addition of the low valent phosphorus centers to the polymer network has the effect of tuning material physical properties.  相似文献   

3.
One of the most important polymers for membranes manufacturing is Polysulfone because of its remarkable properties, like chemical stability, mechanical and thermal properties, and also due to the possibility to obtain a wide range of polymeric membranes for different applications. Membrane functionalization is a key process to obtain high-value membrane materials. The present review paper is a guide related to the latest researches performed in the field of functionalization reactions of polysulfone membranes. It is based on both approaches – reactions performed at the surface of the membranes and also on applications. In this article, ion exchange membranes, biomedical or catalyst applications are presented and commented. Furthermore, key factors or analysis related to the main properties of functionalized membranes are also considered.  相似文献   

4.
Pan  Yu  Wang  Ting-Yun  Yan  Xiao-Ming  Xu  Xiao-Wei  Zhang  Qi-Dong  Zhao  Bao-Lin  El Hamouti  Issam  Hao  Ce  He  Gao-Hong 《高分子科学》2018,36(1):129-138
The stability of anion exchange membranes(AEMs) is an important feature of alkaline exchange membrane fuel cells(AEMFCs), which has been extensively studied. However it remains a real challenge due to the harsh working condition. Herein, we developed a novel type of polysulfone-based AEMs with three modified 1,2-dimethylbenzimidazoliums containing different substitutes at C4-and C7-position. The results showed that the introduction of the substitutes could obviously improve the dimensional and alkaline stabilities of the corresponding membranes. The swelling ratios of resultant AEMs were all lower than 10% after water immersion. The membrane with 4,7-dimethoxy-1,2-dimethylbenzimidazolium group exhibited the highest alkaline stability. Only 9.2% loss of hydroxide conductivity was observed after treating the membrane in 1 mol·L~(-1) KOH solution at 80 °C for 336 h. Furthermore, the density functional theory(DFT) study on the three functional group models showed that the substitutes at C4-and C7-position affected the lowest unoccupied molecular orbital(LUMO) energies of the different 1,2-dimethylbenzimidazolium groups.  相似文献   

5.
We have investigated the transport properties of nanopore alumina membranes that were rendered hydrophobic by functionalization with octadecyltrimethoxysilane (ODS). The pores in these ODS-modified membranes are so hydrophobic that they are not wetted by water. Nevertheless, nonionic molecules can be transported from an aqueous feed solution on one side of the membrane, through the dry nanopores, and into an aqueous receiver solution on the other side. The transport mechanism involves Langmuir-type adsorption of the permeating molecule onto the ODS layers lining the pore walls, followed by solid-state diffusion along these ODS layers; we have measured the diffusion coefficients associated with this transport process. We have also investigated the transport properties of membranes prepared by filling the ODS-modified pores with the water-immiscible (hydrophobic) liquid mineral oil. In this case the transport mechanism involves solvent extraction of the permeating molecule into the mineral oil subphase confined with the pores, followed by solution-based diffusion through this liquid subphase. Because of this different transport mechanism, the supported-liquid membranes show substantially better transport selectivity than the ODS-modified membranes that contain no liquid subphase.  相似文献   

6.
A facile route to generate cyclic peptide nanotubes with tunable interiors is presented. By incorporating 3-amino-2-methylbenzoic acid in the D,L-alternating primary sequence of a cyclic peptide, a functional group can be presented in the interior of the nanotubes without compromising the formation of high aspect ratio nanotubes. The new design of such a cyclic peptide also enables one to modulate the nanotube growth process to be compatible with the polymer processing window without compromising the formation of high aspect ratio nanotubes, thus opening a viable approach toward molecularly defined porous membranes.  相似文献   

7.
Functionalized polydomain chiral elastomers were obtained by cross-linking side-chain liquid crystalline polysiloxanes bearing acid functions. Sorption experiments were performed by the use of an electronic microbalance, in the presence of one enantiomer of a chiral amine molecule, able to interact with the acid groups. The results showed that Fick's diffusion law is not valid anymore as soon as an interaction between the material and the molecule is present. Moreover, it was demonstrated that the grafting of interacting groups on a chiral elastomer enhanced both the capacity and selectivity toward one enantiomer.  相似文献   

8.
Ion selectivity using membranes comprising functionalized carbon nanotubes   总被引:1,自引:0,他引:1  
In this paper, we use applied mathematical modelling to investigate the transportation of ions inside functionalized carbon nanotubes, and in particular the transport of sodium and chloride ions. This problem is important for future ion transport and detection, and also arises in ion diffusion inside complex biological channels. Some important future applications of the system for a solvent are ultra-sensitive biosensors and electrolytes for alkaline fuel cells. We model the interactions between the ions and the nanotube by the Lennard-Jones potential and the interactions between the ions and the functional group by the Coulomb potential, while the atomic interactions between the ions is modeled by both the Lennard-Jones and Coulomb potentials. We further assume that the carbon atoms, the charge of the functional group, and the ions are all evenly distributed on the surface of the nanotube, the entry of the nanotube and the envisaged ionic surface, respectively, so that we may use the continuous approximation to calculate the corresponding potential energies. For nanotubes located in salt water, the molecular effects arising from the bulk solution can be extracted from MD simulation studies. Assuming that the solvent is absent, we first determine the acceptance radii for the sodium or chloride ion entering the nanotube, both with and without a functional group, and we then determine the equilibrium positions of two identical ions inside the nanotube. Finally, the transportation time of an intruding ion through the nanotube is deduced from the total axial force. In the presence of a solvent, the molecular effects arising from the bulk solution are examined and we establish that the presence of a solvent stabilizes the selectivity of the ions.  相似文献   

9.
10.
The ability of chitosan to form complexes with bivalent metal ions has been broadly explored in the literature. The present work investigates the influence of functionalization of macroporous chitosan membranes with histidine on their ability to remove copper ions from aqueous solution in the range of pH 4–6. The maximum adsorption capacity for Cu(II) ion was 2.5 mmol metal/g pristine chitosan membranes. Under this condition, no influence of membrane porosity was observed. However, for membranes with immobilized histidine, the porosity was shown to be a factor that affects the maximum adsorption capacity, with values ranging from 2.0 to 3.0 mmol metal/g chitosan. These results indicate that the immobilization of histidine on porous chitosan membranes presents synergy with porosity in the ability to complex Cu(II) ions. This synergy may be negative or positive, depending on the initial membrane porosity.  相似文献   

11.
We describe polymersomes with ionic liquid interiors dispersed in water. The vesicles are prepared via a simple and spontaneous migration of poly(butadiene-b-ethylene oxide) (PB-PEO) block copolymer vesicles from a hydrophobic ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][TFSI]), to water at room temperature. As PB is insoluble in both water and [EMIM][TFSI] and PEO is well solvated in both media, the vesicles feature a PB membrane with PEO brushes forming both interior and exterior coronas. The robust and stable PB-PEO vesicles migrate across the liquid-liquid interface with their ionic liquid interiors intact and form a stabilized aqueous dispersion of vesicles enclosing microscopic ionic liquid pools. The nanostructure of the vesicles with ionic liquid interiors dispersed in water is characterized by direct visualization using cryogenic transmission electron microscopy. Upon heating, the vesicles can be quantitatively transferred back to [EMIM][TFSI], thus enabling facile recovery. The reversible transport capability of the shuttle system is demonstrated by the use of distinct hydrophobic dyes, which are selectively and simultaneously loaded in the vesicle membrane and interior. Furthermore, the fluorescence of the loaded dyes in the vesicles enables probing of the microenvironment of the vesicular ionic liquid interior through solvatochromism and direct imaging of the vesicles using laser scanning confocal microscopy. This vesicle system is of particular interest as a nanocarrier or nanoreactor for reactions, catalysis, and separations using ionic liquids.  相似文献   

12.
We deposit phospholipid monolayers on highly doped p-GaAs electrodes that are precoated with methyl-mercaptobiphenyl monolayers and operate such a biofunctional electrolyte-insulator-semiconductor (EIS) setup as an analogue of a metal-oxide-semiconductor setup. Electrochemical impedance spectra measured over a wide frequency range demonstrate that the presence of a lipid monolayer remarkably slows down the diffusion of ions so that the membrane-functionalized GaAs can be subjected to electrochemical investigations for more than 3 days with no sign of degradation. The biofunctional EIS setup enables us to translate changes in the surface charge density Q and bias potentials Ubias into the change in the interface capacitance Cp. Since Cp is governed by the capacitance of semiconductor space charge region CSC, the linear relationships obtained for 1/Cp2 vs Q and 1/Cp2 vs Ubias suggests that Cp can be used to detect the surface charges with a high sensitivity (1 charge per 18 nm2). Furthermore, the kinetics of phospholipids degradation by phospholipase A2 can also be monitored by a significant decrease in diffusion coefficients through the membrane by a factor of 104. Thus, the operation of GaAs membrane composites established here allows for electrochemical sensing of surface potential and barrier capability of biological membranes in a quantitative manner.  相似文献   

13.
14.
This paper studies the diffusive and sorption steps of several gases across membranes cast from poly(N-phenyl-exo,endo-norbornene-5,6-dicarboximide) chloroform solutions. Chains packing effects on gas transport was investigated by conducting a parallel study on the permeation characteristics of membranes cast from hydrogenated poly(N-phenyl-exo,endo-norbornene-5,6-dicarboximide) chloroform solutions. The permeability coefficients of several gases in the two membranes were measured finding that hydrogenation of the norbornene moieties decreases gas permeability. The transition states approach was used to determine the trajectories of the gases in the two types of membranes from which the diffusion coefficients were obtained. Monte Carlo techniques based on the Widom method were used to simulate gas sorption process as a function of pressure. The values of the solubility coefficients thus obtained undergo a relatively sharp drop at low pressures approaching to a constant value as pressure increases. With the exception of carbon dioxide, pretty good agreement between the experimental and simulated values of the permeability coefficient is found for the gases studied.  相似文献   

15.
In this study, the functionalized, linear, hydrophobic fluid organosiloxane polymers, namely, methylhydrosiloxane–dimethylsiloxane copolymers supported on a polypropylene microporous flat sheet membrane (Celgard 2502 and 2402) have been tested as supported liquid membranes (SLMs) for phenol recovery from aqueous phases into a 0.1 M NaOH phase. The functionalized polymers include, Me3SiO[MeSi(OR)O]x[Me2SiO]ySiMe3 (containing x = 15–18, 25–35 and 50–55 mol% of R, where R is –(CH2)nNMe2 (n = 3 or 4 or 6) or –(CH2)2OEt pendent organofunctional groups. The functionalities, R, tested were derived from the commercially available 3-dimethylamino-1-propanol and 2-ethoxyethanol as well as newly synthesized 4-dimethylamino-1-butanol and 6-dimethylamino-1-hexanol which have been made for the purpose of this study.

The study showed that phenol permeation expressed as permeate flux through the membranes increases with the larger number of carbon spacers in the alkyl chain of the aminoalcohol pendent, larger porosity of the polypropylene support films, higher mol% of the methylhydrosiloxane portion functionalized and faster flow rates of both the feed and the receiving phases. Phenol permeation was enhanced significantly when the mol% of the methylhydrosiloxane portion was 50–55 or 25–35 with 6-dimethylamino-1-hexanol functionality supported on Celgard 2502.  相似文献   


16.
P C Wang  D L DeVoe  C S Lee 《Electrophoresis》2001,22(18):3857-3867
The concept of microfluidics has significantly influenced the design and the implementation of modern bioanalytical systems due to the fact that these miniaturized devices can handle and manipulate samples in a much more efficient way than conventional instruments. In an analogy to the development of microelectronics, increasingly sophisticated devices with greater functionalities have become one of the major goals being pursued in the area of micrototal analysis systems. The incorporation of polymeric membranes into microfluidic networks has therefore been employed in an effort to enhance the functionalities of these microfabricated devices. These commercially available membranes are porous, flexible, mechanically robust and compatible with plastic microfluidic networks. The large surface area-to-volume ratio of porous membrane media is particularly important for achieving rapid buffer exchange during microdialysis and obtaining ultrahigh concentration of adsorbed enzymes for various biochemical reactions. Furthermore, the membrane pore diameter in the sub-microm range eliminates the constraints of diffusional mass-transfer resistance for performing chiral separation using adsorbed protein as the chiral stationary phase. A review on the recent advancement in the integration of polymeric membranes with microfluidic networks is presented for their widespread applications in bioanalytical chemistry.  相似文献   

17.
We have prepared nanocomposite proton exchange membranes (PEMs) based on Nafion with sulfonic acid functionalized zeolite beta (AFB) as an additive. 2.5 and 5 wt% AFB composite membranes possess proton conductivity/methanol permeability (selectivity) ratios as much as 93% higher than commercial Nafion 117 at 21 °C, and 63% higher at 80 °C. These 2.5 and 5 wt% AFB composite membranes also outperform commercial Nafion 117 in direct methanol fuel cell performance evaluations. The composite membranes are characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, four-electrode impedance for proton conductivity, two-compartment permeation for methanol crossover, and direct methanol fuel cell performance.  相似文献   

18.
Sol–gel chemistry was adeptly exploited to fabricate nanoporous membranes by cooperative self‐assembly of modified triblock copolymer (SEBS‐NH2) and titania network. Reinforcement of the matrix was achieved by hydrolytic condensation of tetraisopropoxytitanate without/with compatiblizing agent (3‐glycidyloxypropyl triethoxysilane), yielding two hybrid systems. Incorporation of different proportions of TiO2 provoked well‐built variations in morphology of compatiblized SEBS‐NH2/TiO2 nanocomposites. At low titania loading, spherical nanoparticles were found well‐dispersed in regimented triblock domains while addition of higher amounts of TiO2 generated nanoporous membranes by mutual self‐assembling of matrix and the reinforcement. Relative improvement of tensile and thermal properties over uncompatiblized nanocomposites was observed owing to enhanced interfacial interactions. Eventually, a combination of the two phases (17.5 wt. % titania in SEBS‐NH2) demonstrated ample mechanical reinforcement, thermal and morphological profiles, ensuing robust self‐assembled nanostructures. Forthcoming prospects are envisioned as well. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
2-Thenoyltrifluoroacetone (TTA) was grafted onto the coupling agent 3-(triethoxysilyl)-propyl-isocyanate to construct the precursor I (TTA-Si), and polymer precursors II (PVPD, PMAA and PVPDMAA) were synthesized through the addition polymerization reactions. Then precursors I and II have coordinated to the rare-earth ions with the carbonyl, carboxyl group or nitrogen atom, respectively, and after hydrolysis and copolycondensation sol-gel process, the three kinds of polymeric hybrids were obtained. FTIR, ultraviolet-visible diffuse reflection and fluorescence absorption spectra, electronic micrographs, room-temperature X-ray diffraction patterns and TG plots were characterized and the results reveal that the hybrid materials showed uniformity in the microstructure, efficient intramolecular energy transfer system and excellent characteristic emission of terbium ions under UV irradiation.  相似文献   

20.
Polar interactions have a profound influence on membrane stability and structure. A membrane-solubilized GCN4 peptide, MS-1, is used to study the impact of polar networks. Amide functionalities from amino acid side chains have been shown to promote peptide oligomerization, but lacked specificity. Herein, the hydrogen bonding interactions of an Asn side chain are coupled with the hydroxyl of Ser or Thr to generate a polar network. Analytical ultracentrifugation and fluorescence resonance energy transfer studies indicate that a trimer assembly is established where each membrane-embedded hydrogen bond contributes 1 kcal mol-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号