共查询到16条相似文献,搜索用时 46 毫秒
1.
针对过程数据存在异常值的问题,为了监控过程均值的偏移,采用中位数统计量■代替传统均值■统计量,提出了一种单边合格品链长■Sensitive Conforming Run Length■控制图。采用马尔科夫链方法研究了■控制图的性能,首先推导出其一步状态转移矩阵,进一步根据马尔科夫链的性质得到其平均链长(Average Run Length, ARL)。为了获得控制图的最优设计参数和性能指标值,保证其处于过程受控状态下的性能,并使其处于过程失控状态下的平均链长最小。研究结果表明,提出的■控制图的统计性能优于传统的双边合格品链长■Run Length,■控制图,尤其针对过程均值产生较小偏移的情形,其优势较为明显。 相似文献
2.
3.
可变抽样区间的单边控制图 总被引:4,自引:0,他引:4
利用质量控制图监督生产过程时 ,通常每隔固定时间从过程抽取固定容量的样本。本文在前文[1] 的基础上设计具有可变抽样区间的单边标准差 (S)图、极差 (R)图和不合格品数 (np)图。计算了这三个图发信号前的平均样本数和平均时间 ,并同固定抽样区间的常规控制图作比较。所设计的控制图能缩短过程失控时间从而减少不合格品数。 相似文献
4.
5.
现实中,过程参数常常未知,需由第Ⅰ阶段的受控样本数据估计得到.不同的第Ⅰ阶段样本数据集对应着目标参数的不同估计值,进而会导致不同的控制限与不同的控制图表现.对于某位实际工作人员而言,最可能的情况是他手里仅有一组第Ⅰ阶段数据集,因此研究在给定一组第Ⅰ阶段数据集下控制图的表现,即条件表现,更具实际意义.基于Monter Carlo模拟,研究了基于样本平均极差,样本平均标准差和样本合并标准差等3种参数估计形式下常见的等尾极差图和无偏极差图的条件平均链长分布,结果表明参数估计对控制图影响严重.为了弥补第Ⅰ阶段数据量的不足,基于bootstrap方法,提出了修正控制图以获得理想的条件受控表现.比较结果显示,基于样本合并标准差的估计方法更好,修正的无偏极差图表现优于相应的修正等尾极差图. 相似文献
7.
带警戒限的均值控制图中平均链长的计算公式 总被引:7,自引:1,他引:6
带警戒限的均值控制图中 ,平均链长ARL(AverageRunLength)是其重要特性。本文利用转移概率流图TPFG(TransitionProbabilityFlowGraphs)方法导出了关于ARL的一般公式 相似文献
8.
现代制造过程中,某些产品的不合格率非常低,通常将这类过程称为高质量过程.由于高质量过程中相邻不合格产品之间的时间间隔服从指数分布,可以通过指数控制图实现对过程状态的监控.因此,本文提出一种改进型指数加权移动平均(Improved Exponentially Weighted Moving Average,IEWMA)指数控制图,并采用蒙特卡洛仿真获得控制图的平均运行链长(Average Run Length,ARL),仿真结果表明该控制图的性能优于传统单边EWMA指数控制图,尤其针对过程中产生较小偏移的情形具有较好的检测性能. 相似文献
9.
在固定时间抽样的可变抽样区间的极值控制图 总被引:2,自引:0,他引:2
本文根据 Reynolds在固定时间抽样的可变抽样区间 (VSIFT)的 - x控制图 [1 ]的模型设计极值 (ζ)图。规定样本在相等间隔的固定时间点抽取 ,当过程有变化的迹象时 ,允许在两个固定时间之间抽取附加样本。若样本点超过控制限 ,则 VSIFT图同常规图一样发信号。本文计算了 VSIFTζ图的发信号前的平均时间 ,并同固定抽样区间 (FSI)的常规ζ图作比较。极值图不需计算 ,有关集中和分散的信息在一个图上给出 ,且可画上规格限 ,在实践中应用方便。本文设计的 VSIFTζ图能缩短过程失控时间从而减少不合格品数 相似文献
10.
在固定时间抽样的可变抽样区间控制图 总被引:1,自引:0,他引:1
本文根据Reynolds在固定时间抽样的可变抽样区间(VSIFT)的x^-控制图^[1]的模型设计中位值x^-和极差R图,规定样本在样等间隔的固定时间点抽取,当过程有变化的迹象时,允许有两个固定时间之间抽取附加样本,本文计算了VSIFTx^~图和R图及联合x^~-R图的发信号前的平均时间,并同固定抽样区间(FSI)的常规x^~和R图作比较,所设计的VSIFTx^~和R图能缩短过程失控时间从而减少不合格品数。 相似文献
11.
Sotiris Bersimis Markos V. Koutras Petros E. Maravelakis 《European Journal of Operational Research》2014
In the present article, we propose a new control chart for monitoring high quality processes. More specifically, we suggest declaring the monitored process out of control, by exploiting a compound rule couching on the number of conforming units observed between the (i − 1)th and the ith nonconforming item and the number of conforming items observed between the (i − 2)th and the ith nonconforming item. Our numerical experimentation demonstrates that the proposed control chart, in most of the cases, exhibits a better (or at least equivalent) performance than its competitors. 相似文献
12.
13.
Control charts with exponentially weighted moving average (EWMA) statistics (mean and variance) are used to jointly monitor the mean and variance of a process. An EWMA cost minimization model is presented to design the joint control scheme based on pure economic or both economic and statistical performance criteria. The pure economic model is extended to the economic-statistical design by adding constraints associated with in-control and out-of-control average run lengths. The quality related production costs are calculated using Taguchi’s quadratic loss function. The optimal values of smoothing constants, sampling interval, sample size, and control chart limits are determined by using a numerical search method. The average run length of the control scheme is computed by using the Markov chain approach. Computational study indicates that optimal sample sizes decrease as the magnitudes of shifts in mean and/or variance increase, and higher values of quality loss coefficient lead to shorter sampling intervals. The sensitivity analysis results regarding the effects of various inputs on the chart parameters provide useful guidelines for designing an EWMA-based process control scheme when there exists an assignable cause generating concurrent changes in process mean and variance. 相似文献
14.
由于自相关过程违背了过程输出数据独立性的假定,使得传统休哈特图的有效性受到质疑。本文首先讨论控制图设计基本思想,然后分析了对自相关过程监控的残差控制图原理;进而以平均链长和各链点检出概率为准则,系统研究了AR(1)过程残差控制图的检测能力,并与休图进行了比较。最后,通过一个模拟验证了该方法的有效性。 相似文献
15.
A process variability control chart 总被引:1,自引:0,他引:1
In this study a Shewhart type control chart namely the V
t
chart, is proposed for improved monitoring of the process variability of a quality characteristic of interest Y. The proposed control chart is based on the ratio type estimator of the variance using a single auxiliary variable X. It is assumed that (Y, X) follows a bivariate normal distribution. The design structure of the V
t
chart is developed for Phase-I quality control and its comparison is made with those of the S
2 chart (a well-known Shewhart control chart) and the V
r
chart (a Shewhart type control chart proposed by Riaz (Comput Stat, 2008a) used for the same purpose. It is observed that
the proposed V
t
chart outperforms the S
2 and V
r
charts, in terms of discriminatory power, for detecting moderate to large shifts in the process variability. It is observed
that the performance of the V
t
chart keeps improving with an increase in |ρ
yx
| , where ρ
yx
is the correlation between Y and X. 相似文献
16.
There are two key tools for the control of production processes — Statistical Process Control (SPC) and Maintenance Management (MM), which are traditionally separated (both in science and in business practice), even though their goals overlap a great deal. Their common goal is to achieve optimal product quality, little downtime and cost reduction by controlling variances in the process. Since single or separated parallel applications may not be fully effective, this paper discusses the integration of statistical process control and maintenance, and provides an integrated model of Control Chart (CC) and MM. A mathematical model is given to analyze the cost of the integrated model and the grid-search approach is used to find the optimal values of policy variables (n,h,L,k) that minimize hourly cost. Finally, a numerical experiment is conducted to investigate the effects of cost parameters on the solution of the design. 相似文献