首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
Using φ-mapping method and topological current theory,the topological structure and bifurcation of disclination lines in two-dimensional liquid crystals are studied.By introducing the strength density and the topological current of many disclination lines,the total disclination strength is topologically quantized by the Hopf indices and Brouwer degrees at the singularities of the director field when the Jacobian determinant of director field does not vanish.When the Jacobian determinant vanishes,the origin,annihilation and bifurcation processes of disclination lines are studied in the neighborhoods of the limit points and bifurcation points,respectively.The branch solutions at the limit point and the different directions of all branch curves at the bifurcation point are calculated with the conservation law of the topological quantum numbers.It is pointed out that a disclination line with a higher strength is unstable and it will evolve to the lower strength state through the bifurcation process.  相似文献   

2.
In the light of φ-mapping method and topological current theory, the effect of disclination lines on the free energy density of nematic liquid crystals is studied. It is pointed out that the total Frank free energy density can be divided into two parts. One is the distorted energy density of director field around the disclination lines. The other is the saddle-splay energy density, which is shown to be centralized at the disclination lines and to be topologically quantized in the unit of kπ /2 when the Jacobian determinant of the director field does not vanish at the singularities of the director field. The topological quantum numbers are determined by the Hopf indices and Brouwer degrees of the director field at the disclination lines, i.e., the disclination strengthes. When the Jacobian determinant vanishes, the generation, annihilation, intersection, splitting and merging processes of the saddle-splay energy density are detailed in the neighborhoods of the limit points and bifurcation points, respectively. It is shown that the disclination line with high topological quantum number is unstable and will evolve to the low topological quantum number states through the splitting process.  相似文献   

3.
In the light of φ-mapping method-and topological current theory, the effect of disclination lines on the free energy density of nematic liquid crystals is studied. It is pointed out that the total Frank free energy density can be divided into two parts. One is the distorted energy density of director field around the disclination lines. The other is the saddle-splay energy density, which is shown to be centralized at the disclination lines and to he topologically quantized in the unit of kπ/2 when the Jacobian determinant of the director field does not vanish at the singularities of the director field. The topological quantum numbers are determined by the Hopf indices and Brouwer degrees of the director field at the disclination lines, i.e., the disclination strengthes. When the Jacobian determinant vanishes, the generation, annihilation, intersection, splitting and merging processes of the saddle-splay energy density are detailed in the neighborhoods of the limit points and bifurcation points, respectively. It is shown that the disclination line with high topological quantum number is unstable and will evolve to the low topological quantum number states through the splitting process.  相似文献   

4.
In the light of φ-mapping method and topological current theory, the contribution of disclination lines to free energy density of liquid crystals is studied in the single-elastic constant approximation. It is pointed out that the total free energy density can be divided into two parts. One is the usual distorted energy density of director field around the disclination lines. The other is the free energy density of disclination lines themselves, which is shown to be centralized at the disclination lines and to be topologically quantized in the unit of kπ /2. The topological quantum numbers are determined by the Hopf indices and Brouwer degrees of the director field at the disclination lines, i.e. the disclination strengths. From the Lagrange‘s method of multipliers, the equilibrium equation and the molecular field of liquid crystals are also obtained. The physical meaning of the Lagrangian multiplier is just the distorted energy density.  相似文献   

5.
Spiral waves, whose rotation center can be regarded as a point defect, widely exist in various two-dimensional excitable systems. In this paper, by making use of Duan's topological current theory, we obtain the charge density of spiral waves and the topological inner structure of its topological charge. The evolution of spiral wave is also studied from the topological properties of a two-dimensional vector field. The spiral waves are found generating or annihilating at the limit points and encountering, splitting, or merging at the bifurcation points of the two-dimensional vector field. Some applications of our theory are also discussed.  相似文献   

6.
In the light of C-mapping method and topological current theory, the contribution of disclination lines to free energy density of liquid crystals is studied in the single-elastic constant approximation. It is pointed out that the total free energy density can be divided into two parts. One is the usual distorted energy density of director field around the disclination lines. The other is the free energy density of disclination lines themselves, which is shown to be centralized at the disclination lines and to be topologically quantized in the unit of kn/2. The topological quantum numbers are determined by the Hopf indices and Brouwer degrees of the director l~eld at the disclination lines, i.e. the disclination strengths. From the Lagrange‘s method of multipliers, the equilibrium equation and the molecular field ofliquid crystals are also obtained. The physical meaning of the Lagrangian multiplier is just the distorted energy density.  相似文献   

7.
By generalizing the topological current of Abelian Chern--Simons (CS) vortices, we present a topological tensor current of CS p-branes based on the \phi -mapping topological current theory. It is revealed that CS p-branes are located at the isolated zeros of the vector field \phi(x), and the topological structure of CS p-branes is characterized by the winding number of the \phi-mappings. Furthermore, the Nambu--Goto action and the equation of motion for multi CS p-branes are obtained.  相似文献   

8.
A topological theory of liquid crystal films in the presence of defects is developed based on the Ф-mapping topological current theory. By generalizing the free-energy density in "one-constant" approximation, a covariant free- energy density is obtained, from which the U(1) gauge field and the unified topological current for monopoles and strings in liquid crystals are derived. The inner topological structure of these topological defects is characterized by the winding numbers of Ф-mapping.  相似文献   

9.
By making use of the U(1) gauge potential decomposition theory and the Ф-mapping topological current theory, we investigate the Schroedinger-Chern-Simons model in the thin-film superconductor system and obtain an exact Bogomolny self-dual equation with a topological term. It is revealed that there exist self-dual vortices in the system. We study the inner topological structure of the self-dual vortices and show that their topological charges are topologically quantized and labeled by Hopf indices and Brouwer degrees. Furthermore, the vortices are found generating or annihilating at the limit points and encountering, splitting or merging at the bifurcation points of the vector field Ф.  相似文献   

10.
Based on the φ-mapping topological current theory and the decomposition of gauge potential theory, the vortex lines and the monopoles in electrically conducting plasmas are studied. It is pointed out that these two topological structures respectively inhere in two-dimensional and three-dimensional topological currents, which can be derived from the same topological term n^→·(Эin^→×Эjn^→), and both these topological structures axe characterized by the φ-mapping topological numbers-Hopf indices and Brouwer degrees. Furthermore, the spatial bifurcation of vortex lines and the generation and annihilation of monopoles are also discussed. At last, we point out that the Hopf invaxiant is a proper topological invaxiant to describe the knotted solitons.  相似文献   

11.
Using -mapping method and topological current theory, the properties and behaviors of disclination points in three-dimensional liquid crystals are studied. By introducing the strength density and the topological current of many disclination points, the total disclination strength is topologically quantized by the Hopf indices and Brouwer degrees at the singularities of the general director field when the Jacobian determinant of the general director field does not vanish. When the Jacobian determinant vanishes, the origin, annihilation, and bifurcation of disclination points are detailed in the neighborhoods of the limit point and bifurcation point, respectively. The branch solutions at the limit point and the different directions of all branch curves at the first- and second-order degenerated points are calculated. It is pointed out that a disclination point with a higher strength is unstable and will evolve to the lower strength state through the bifurcation process. An original disclination point can split into at most four disclination points at one time.  相似文献   

12.
Topological analysis of disclinations in nematic liquid crystals is an interesting and diverse topic that goes from strict mathematical theorems to applications in elaborate systems found in experiments and numerical simulations. The theory of nematic disclinations is shown from both the geometric and topological perspectives. Entangled disclination line networks are analyzed based on their shape and the behavior of their cross section. Methods of differential geometry are applied to derive topological results from reduced geometric information. For nematic braids, systems of −1/2 disclination loops, created by inclusion of homeotropic colloidal particles, a formalism of rewiring is constructed, allowing comparison and construction of an entire set of different conformations. The disclination lines are described as ribbons and a new topological invariant, the self-linking number, is introduced. The analysis is generalized from a constant −1/2 profile to general profile variations, while retaining the geometric treatment. The workings of presented topological statements are demonstrated on simple models of entangled nematic colloids, estimating the margins of theoretical assumptions made in the formal derivations, and reviewing the behavior of the disclinations not only under topological, but also under free-energy driven constraints.  相似文献   

13.
14.
In this work, we study the low-energy electronic spectrum of a graphene layer structure with a disclination in the presence of a magnetic field. We make this study using the continuum approach, where we use the geometric theory of topological defects to introduce a disclination in a graphene layer, and the electrons are described by the massless Dirac equation in this curved background. The bound states energy spectrum and eigenfunctions are also obtained and an explicit dependence was found on the parameter that characterizes the topological defect and on the magnetic field.  相似文献   

15.
In this work, we investigate the combined influence of the nontrivial topology introduced by a disclination and non inertial effects due to rotation, in the energy levels and the wave functions of a noninteracting electron gas confined to a two-dimensional pseudoharmonic quantum dot, under the influence of an external uniform magnetic field. The exact solutions for energy eigenvalues and wave functions are computed as functions of the applied magnetic field strength, the disclination topological charge, magnetic quantum number and the rotation speed of the sample. We investigate the modifications on the light interband absorption coefficient and absorption threshold frequency. We observe novel features in the system, including a range of magnetic field without corresponding absorption phenomena, which is due to a tripartite term of the Hamiltonian, involving magnetic field, the topological charge of the defect and the rotation frequency.  相似文献   

16.
The notion of an electrostatic charge of (±2)-twist disclinations is used to approximate the evaluation of the electrostatic interaction energy among disclinations forming arrays in finite samples of ferroelectric chiral smectic C liquid crystals. Screening effects of free charges in a material surrounding the disclination are taken into account by introducing a phenomenological depolarisation factor.The electrostatic interaction energy is important in chiral smectic C materials with high values of the spontaneous polarisation when screening effects of free charges are small. Then the electrostatic interaction leads to elimination of disclinations from the sample. When there is a high concentration of free charges in the sample (smaller value of depolarisation factor), the electrostatic interaction energy is of the order of the elastic interaction energy of disclinations what influences the equilibrium of disclination arrays in the sample. Two disclination configurations are considered. In the Brunet-Williams configuration the disclinations of opposite topological charge have also the opposite electrostatic charge so their attraction is augmented. This attraction can be balanced by the helical structure in the central part of the sample when the sample thickness is rather high.On the contrary, in the Glogarová-Pavel configuration the disclinations of opposite topological charge have the electrostatic charge of the same sign. The equilibrium in this configuration is either a balance of elastic attraction and electrostatic repulsion if elastic and Coulomb forces are of the same order or it is governed by the value of the anchoring energy when electrostatic interaction prevails over the elastic one.  相似文献   

17.
In this paper we study the relativistic quantum dynamics of a massless fermion confined in a quantum ring. We use a model of confining potential and introduce the interaction via Dirac oscillator coupling, which provides ring confinement for massless Dirac fermions. The energy levels and corresponding eigenfunctions for this model in graphene layer in the presence of Aharonov–Bohm flux in the centre of the ring and the expression for persistent current in this model are derived. We also investigate the model for quantum ring in graphene layer in the presence of a disclination and a magnetic flux. The energy spectrum and wave function are obtained exactly for this case. We see that the persistent current depends on parameters characterizing the topological defect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号