首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method combination, headspace solid-phase dynamic extraction coupled with gas chromatography/tandem mass spectrometry (HS-SPDE/GC/MS/MS), is introduced to determine drugs of abuse in hair samples. This highly automated procedure utilizes SPDE for pre-concentration and on-coating derivatization as well as GC and triple quadrupole MS/MS for selective and sensitive detection. All these steps, apart from washing and cutting of the hair samples, are performed without manual intervention on a robot-like autosampler.SPDE is a solventless extraction technique related to solid-phase microextraction (SPME). The analytes are absorbed from the sample headspace directly into a hollow needle with an internal coating of polydimethylsiloxane by repeated aspirate/dispense cycles.The HS-SPDE/GC/MS/MS procedure was applied to the analysis of methadone, the trimethylsilyl derivatives of cannabinoids and the trifluoroacetyl derivatives of amphetamines and designer drugs. The method was shown to be sensitive with detection limits between 6 and 52 pg/mg hair matrix and precision between 0.4 and 7.8% by the use of an internal standard technique. Linearity was obtained from 0.1-20 ng/mg with coefficients of correlation between 0.995 and 0.999.Compared with conventional methods of hair analysis, HS-SPDE/GC/MS/MS is easier to use, substantially faster, with the degree of sensitivity and reproducibility demanded in clinical and forensic toxicology. The main advantage of the SPDE technique in relation to SPME is the robustness of the capillary.  相似文献   

2.
In the present study a headspace solid-phase dynamic extraction method coupled to gas chromatography–mass spectrometry (HS-SPDE-GC/MS) for the trace determination of volatile halogenated hydrocarbons and benzene from groundwater samples was developed and evaluated. As target compounds, benzene as well as 11 chlorinated and brominated hydrocarbons (vinyl chloride, dichloromethane, cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, carbon tetrachloride, chloroform, trichloroethylene, tetrachloroethylene, bromoform) of environmental and toxicological concern were included in this study. The analytes were extracted using a SPDE needle device, coated with a poly(dimethylsiloxane) with 10% embedded activated carbon phase (50-μm film thickness and 56-mm film length) and were analyzed by GC/MS in full-scan mode. Parameters that affect the extraction yield such as extraction and desorption temperature, salting-out, extraction and desorption flow rate, extraction volume and desorption volume, the number of extraction cycles, and the pre-desorption time have been evaluated and optimized. The linearity of the HS-SPDE-GC/MS method was established over several orders of magnitude. Method detection limits (MDLs) for the compounds investigated ranged between 12 ng/L for cis-dichloroethylene and trans-dichloroethylene and 870 ng/L for vinyl chloride. The method was thoroughly validated, and the precision at two concentration levels (0.1 mg/L and a concentration 5 times above the MDL) was between 3.1 and 16% for the analytes investigated. SPDE provides high sensitivity, short sample preparation and extraction times and a high sample throughput because of full automation. Finally, the applicability to real environmental samples is shown exemplarily for various groundwater samples from a former waste-oil recycling facility. Groundwater from the site showed a complex contamination with chlorinated volatile organic compounds and aromatic hydrocarbons. Figure SPDE Principle  相似文献   

3.
High concentration capacity headspace techniques (headspace solid-phase microextraction (HS-SPME) and headspace sorptive extraction (HSSE)) are a bridge between static and dynamic headspace, since they give high concentration factors as does dynamic headspace (D-HS), and are as easy to apply and as reproducible as static headspace (S-HS). In 2000, Chromtech (Idstein, Germany) introduced an inside-needle technique for vapour and liquid sampling, solid-phase dynamic extraction (SPDE), also known as "the magic needle". In SPDE, analytes are concentrated on a 50 microm film of polydimethylsiloxane (PDMS) and activated carbon (10%) coated onto the inside wall of the stainless steel needle (5 cm) of a 2.5 ml gas tight syringe. When SPDE is used for headspace sampling (HS-SPDE), a fixed volume of the headspace of the sample under investigation is sucked up an appropriate number of times with the gas tight syringe and an analyte amount suitable for a reliable GC or GC-MS analysis accumulates in the polymer coating the needle wall. This article describes the preliminary results of both a study on the optimisation of sampling parameters conditioning HS-SPDE recovery, through the analysis of a standard mixture of highly volatile compounds (beta-pinene, isoamyl acetate and linalool) and of the HS-SPDE-GC-MS analyses of aromatic plants and food matrices. This study shows that HS-SPDE is a successful technique for HS-sampling with high concentration capability, good repeatability and intermediate precision, also when it is compared to HS-SPME.  相似文献   

4.
Lan L  Hu B  Yu C 《Journal of chromatography. A》2010,1217(45):7003-7009
An organic-inorganic hybrid titania-hydroxy-terminated silicone oil (titania-OH-TSO) stir bar coating was prepared by sol-gel method. The extraction performance of titania-OH-TSO coated stir bar was evaluated and compared with poly(dimethysiloxane) (PDMS), poly(dimethysiloxane)-divinylbenzene (PDMS-DVB), poly(dimethysiloxane)-β-cyclodextrin (PDMS-β-CD) and C(18) coated stir bar with five polar drugs of abuse including amphetamine (PA), methamphetamine (MA), 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA) and ketamine (Ke) as the model analytes. The experimental results revealed that the titania-OH-TSO coated stir bar exhibited highly pH-resistant ability, good preparation reproducibility, superior selectivity and high extraction efficiency for the target compounds. Based on this fact, a new method of titania-OH-TSO coated stir bar sorptive extraction (SBSE) combined with high performance liquid chromatography (HPLC)-ultraviolet visible (UV) detection was developed for the analysis of five drugs of abuse in urine samples. The factors affecting the extraction efficiency of SBSE such as sample pH, desorption solvent, sample volume, extraction time, desorption time, stirring rate and ionic strength were investigated and the optimal extraction conditions were established. Under the optimized conditions, the limits of detection (LODs) for titania-OH-TSO coated SBSE-HPLC-UV determination of five polar drugs of abuse were in the range of 2.3-9.1 μg/L with relative standard deviations (RSDs) ranging from 7.3 to 8.9% (c=300 μg/L, n=6), and all of the target compounds exhibited good linearity over a concentration range of 30-3000 μg/L. The developed method was applied to the determination of amphetamines and Ke in urine samples of drug abusers with satisfactory results.  相似文献   

5.
Trans-2-nonenal is an aldehyde contributing to an unpleasant off-flavor and odor of rancid butter in stored beer. The automated solid-phase microextraction technique (SPME) coupled with gas chromatography (GC) and solid-phase dynamic extraction (SPDE) coupled with gas chromatography were optimized and introduced to determine trans-2-nonenal in barley, malt and beer. Five types of SPME fibers coated with different stationary phases (100 μm PDMS, 65 μm PDMS/DVB, 85 μm CAR/PDMS, 50/30 μm DVB/CAR/PDMS, 85 μm PA) and two needles (PDMS, PDMS/AC) were compared and tested for their efficiencies in the headspace (HS) SPME and SPDE determination of trans-2-nonenal in barley, malt and beer. The highest extraction efficiency of HS-SPME was achieved with the PDMS/DVB fiber, and addition of 1.5 g of NaCl, extraction time was 20 min at 60 °C. The highest extraction efficiency of HS-SPDE was obtained with the PDMS needle, 15 extraction strokes at 60 °C and addition of 1.5 g of NaCl. Trans-2-nonenal was identified with the method of HS-SPME coupled gas chromatography-mass spectrometry (GC–MS); the samples were analyzed using the HS-SPME-GC-coupled gas chromatography-flame ionization detector (GC-FID) technique.  相似文献   

6.
A comparison is made between static headspace analysis and headspace solid-phase dynamic extraction (HS-SPDE) for the quantitative determination of trace level BTEX solvents (benzene, toluene, ethylbenzene and o-, m-, and p-xylene) in soft drinks. Two non-polar extraction phases were investigated for SPDE using an automated sampler with a gas-tight syringe equipped with a special needle coated on the inside with the extraction phase. Following adsorption onto the phase, the analytes were thermally desorbed directly into a GC-MS. The techniques were optimised and evaluated by analysis of spiked soft drink samples. The use of the SPDE device gave comparable results to the static headspace method, with lower detection limits for some compounds, and also offers advantages for applications where lower temperatures are preferred.  相似文献   

7.
A commercial in-tube sorptive extraction device, known as solid-phase dynamic extraction (SPDE), has been evaluated for the extraction of non-polar volatile aromatic analytes from aqueous solutions in both headspace and liquid injection modes. An automated sampler is used with a gas-tight 2.5 ml syringe equipped with a special needle that is coated on the inside with a non-polar extraction phase. After absorption onto the phase, the analytes were thermally desorbed directly into a GC-MS system. The technique was evaluated for the determination of furan, benzene and toluene. The sensitivity for toluene was greatly improved on using SPDE compared to static headspace. A slight increase in sensitivity was observed for benzene but none for determination of furan. Estimated limits of detection ranged from 0.2 to 2 microg/l.  相似文献   

8.
Headspace solid-phase dynamic extraction coupled to gas chromatography-mass spectrometry (HS-SPDE-GC/MS) was evaluated for the trace determination of polar volatile organic compounds (PVOC) from aqueous matrices. The target compounds included 3 ethers and 12 alcohols. Four SPDE needle coatings with different phase polarities and sorption properties (WAX, 1701, PDMS, PDMS/AC) were tested. The effects of extraction temperature, number of extraction cycles, and ionic strength on partitioning of the target compounds have been investigated in detail, including the determination of salting-out constants for the investigated compounds. Lowest method detection limits (MDLs) were obtained with the WAX and the PDMS/AC phase. The WAX phase showed MDLs for ethers in the range of 0.06 microg/L (MTBE) to 0.8 microg/L (1,4-dioxane) and for alcohols between 0.02 microg/L (3-methyl-1-pentanol) and 3.5 microg/L (1-propanol). The evaluated MDLs for ethers with the PDMS/AC were in the range 0.06 microg/L (MTBE) to 1.2 microg/L (1,4-dioxane) and for alcohols between 0.004 microg/L (1-hexanol) and 4.9 microg/L (ethanol). Using either of these two phases, SPDE provides comparable or better sensitivities for the investigated compounds than other enrichment techniques, high sample throughput because of full automation, and short extraction times as well as a high robustness of the extraction phase because of its protection inside the steel needle. SPDE applicability has been demonstrated for the determination of fusel oils in different alcoholic beverages.  相似文献   

9.
An automated liquid chromatographic/tandem mass spectrometric (LC/MS/MS) method is presented for the screening and confirmation of 16 beta-blocking drugs in clinical and autopsy urine samples. The described method involved C(18) solid phase extraction, LC separation and MS analysis on a triple-stage quadrupole mass analyser. Samples were initially pre-screened for the presence of any beta-blocking drugs using LC/MS with selected ion monitoring. Any compounds tentatively identified as beta-blocking drugs on the basis of their LC retention time and protonated molecular ion were then automatedly subjected to a second analysis in which the relevant MS/MS product ion mass spectra were acquired. These product ion mass spectra were then automatically searched against a 400-substance mass spectral library containing previously acquired beta-blocking drugs. The results demonstrated that library search of beta-blocking drugs in urine with MS/MS product ion mass spectra was more reliable and produced fewer false negatives than library searching with mass spectra derived from single-stage quadrupole MS. The limits of identification in the MS/MS product ion scan ranged from 0.02 mg l(-1) for carvedilol to 1.2 mg l(-1) for pindolol, the majority of the values being below 0.2 mg l(-1).  相似文献   

10.
Extractions of liquid samples were carried out using wall coated needles prepared from stainless steel capillary columns instead of syringe needles. This micro extraction technique was applied to the analysis of pesticides in water. Important parameters influencing the extraction such as sample velocity, extraction time and also the desorption parameters were investigated and optimized. Automation of this technique was realized using a conventional automatic sampler. Limits of detection were improved using the multiple extraction/desorption technique. Chromatographic data and limits of detection were compared with those obtained by solid phase micro extraction (SPME). Using a needle with a 7 microns film yielded limits of detection varying from 0.001-0.1 microgram/L and were in the same range as those resulting from the extraction using a 100 microns polydimethylsiloxane (PDMS) SPME fiber. The main advantages of the needle extraction technique were the significantly higher extraction speed and the practical aspects of a stable steel needle compared to those of a fragile fiber. The extraction speed using a needle with a 7 microns film was up to five times higher than the speed of SPME using a 100 microns PDMS fiber. The steel needle could be stressed mechanically in a higher extent than a SPME fiber. Sample volumes and aliquots of liquid media could be handled and moved from one bottle to another using the automatic sampler.  相似文献   

11.
The light absorption change of phenolphthalein entrapped in a silica or titania matrix coated as a thin film onto a quartz optical fibre or on planar substrate by the sol-gel technique has been studied. The possibility to use this effect together with evanescent wave principle for the monitoring of pH changes has been tested. The film drying conditions necessary for the film to be sensitive to pH changes were determined experimentally. The stability and reversibility of the colour change was found to be better in the case of titanium matrix.  相似文献   

12.
Heptakis (2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD) blending with hydroxy-terminated silicone oil (OH-TSO) coated solid-phase microextraction (SPME) fiber (DM-β-CD/OH-TSO) was first prepared with sol-gel technology and applied to headspace SPME for analysis of ephedrine (EP) and methamphetamine (MA) in human urine by gas chromatography (GC). By exploiting the advantages of the unique cavity-shaped cyclic molecular structure of CD and the superiorities of sol-gel coating technique, the novel fiber showed desirable extraction ability and operational stability. Influence of relevant experimental parameters (extraction time, extraction temperature, basicity, ionic strength, etc.) was systematically investigated. In the optimal conditions the proposed headspace SPME-GC method provided good linearity over four orders of magnitude with limit of detection (LOD) of ng/ml (0.33 ng/ml for EP, 0.60 ng/ml for MA). The recoveries of EP and MA in urine were 98.0% and 98.2%. And the relative standard deviations (R.S.D., n = 6) for EP and MA were 3.9% and 5.0%, respectively.  相似文献   

13.
We have developed a solvent-free and sensitive method for the identification and quantification of methamphetamine (MAMP), amphetamine (AMP) and ecstasy (MDMA) in human urine. It is based on the use of an inside-needle adsorption trap (INAT) and a molecularly imprinted polymer (MIP). The MAMP-MIP layer was coated on the internal surface of a hollow stainless steel needle, which was oxidized and silylated. It was used as the extraction needle. A model solution containing the drugs was slowly passed through the extraction needle. After adsorption of the analytes, the needle was directly transferred to the injector of a gas chromatograph, where the analytes were thermally desorbed, separated by GC, and detected with a flame ionization detector. The method does not require an extraction solvent, is fast and simple. The linear range of the calibration graphs are rather wide, and the limit of detection and the limit of quantification (LOQ) for MAMP are 12 and 40?ng?mL?1, respectively. The relative standard deviations (RSD%) for six repeated experiments (at 500?ng?mL?1 of MAMP) is 4.9?%. The relative recoveries obtained for MAMP in spiked human urine samples are in the range of 81–93?%.
Graphical Abstract Figure
Typical chromatograms corresponding to the extraction of MAMP, AMP and MDMA in the optimum condition from human urine sample. Lower chromatogram (I) belong to non-spiked samples after extraction using MAMP-MIP coated needle and the other chromatograms, (II) and (III), are related to spiked samples with MAMP, AMP and MDMA (each 0.5?μg?mL?1) and extraction using the NIP-coated needle and MAMP-MIP coated needle, respectively.  相似文献   

14.
The present work reports the development of a new analytical procedure for simple and rapid screening of low molecular weight drugs (<500 Da) from human urine samples by atmospheric-pressure matrix-assisted laser desorption/ionization mass spectrometry (AP-MALDI-MS) combined with single drop microextraction (SDME). The success of the proposed method is due to the use of methyltrioctylammonium chloride (MTOAC) as additive to avoid the noise arising from the matrix ions (alpha-cyano-4-hydroxycinnamic acid (CHCA)). SDME also aided in alleviating the interferences arising from other matrix ions present in the urine samples prior to AP-MALDI-MS analysis. Factors affecting the extraction efficiency of drugs, such as selection of solvent, stirring speed, extraction time, exposure volume of extraction phase and salt addition, have been optimized. The optimum molar ratio of CHCA/MTOAC that gave the minimum background noise of CHCA ions was 700:1. The limit of detection (LOD) and relative standard deviation (RSD) of the method were in the ranges 0.3-1.6 microM and 7.8-11.4%, respectively. The SDME method was compared with liquid-liquid extraction (LLE) and hollow fiber liquid-phase microextraction (HF-LPME) to evaluate the compatibility of the present method in the extraction of drugs from urine samples. The role of MTOAC as matrix ion signal suppressor and SDME as analyte-separating device in the rapid screening of low molecular weight drugs from human urine samples using AP-MALDI/MS has been reported.  相似文献   

15.
A sol-gel technique was used for the preparation of a stir bar coated with a composite composed of polydimethysiloxane and beta-cyclodextrin (PDMS/beta-CD). The sol-gel mechanism during coating procedure was discussed and successful binding of beta-CD to the sol-gel network was confirmed by the IR spectra. Scanning electron micrographs of the stir bars revealed a homogeneous surface with a film thickness of 30-150 microm attributing to different coating times. Good thermal stability and solvent-resistance of the stir bar were found thanks to chemical binding formed between the stationary phase and the glass substrate. The PDMS/beta-CD coated stir bar was proved to have better selectivity to polar compounds compared to the PDMS coated stir bar, and higher extraction capacity compared to the corresponding PDMS/beta-CD coated fiber. Methods for the determinations of estrogens in environmental water, bisphenol A in drinking water and in leachate of one-off dishware by the PDMS/beta-CD coated stir bar coupled with high-performance liquid chromatography (HPLC) were developed. The limits of detection were within the range of 0.04-0.11 microg l(-1) for estrogens using UV detection and 8 ngl(-1) for bisphenol A using fluorescence detection. Reproducibility with RSD less than 9.7% for extractions of real water samples at microg l(-1) or ngl(-1) level was obtained.  相似文献   

16.
Solid-phase dynamic extraction (SPDE) belongs to the most innovative sample preparation and enrichment techniques. However, there is still a lack of knowledge on the fundamentals of SPDE and its applicability in the field of environmental monitoring. A homemade sampling device is constructed to make a detailed study of SPDE kinetics for toluene extraction. It proved that at least 50 aspirating and dispensing cycles were necessary to obtain toluene equilibration between gas and coating phase. A mechanistic model is proposed to explain that in every dispensing step during SPDE, significant losses of retained analytes (up to 48%) occur due to desorption processes. A new accelerated solid-phase dynamic extraction procedure (ASPDE) has been developed that avoids dispensing stages during extraction. The resulting extraction time proves to be 1.7 min, being a reduction by a factor of 37 compared with the SPDE extraction time. ASPDE proved to have high potential in ambient/indoor air monitoring. The limit of detection for toluene was determined to be 56 ppb(v), i.e. a factor of respectively, 6 and 35 lower than obtained with SPME and conventional headspace sampling with gas syringe.  相似文献   

17.
Titania film imprinted by bilirubin molecule at the surface of quartz crystal was prepared using molecular imprinting and surface sol-gel process. The molecularly imprinted titania film was characterized by FTIR spectra, and the interaction between bilirubin and imprinted film was investigated using quartz crystal microbalance (QCM) technique. Compared with pure titania film, the molecularly imprinted titania film exhibits a much higher adsorption capacity for the target molecule, and the adsorption kinetic parameter estimated from the in situ frequency measurement is about 1.6×10(8) M(-1), which is ten times higher than that obtained on pure titania film. The photocatalytic measurements indicate that the bilirubin adsorbed on molecularly imprinted titania film can be completely removed under UV illumination. Moreover, our study indicates that the molecularly imprinted titania film possesses a better stability and reusability.  相似文献   

18.
Extractions of liquid samples were carried out using wall coated needles prepared from stainless steel capillary columns instead of syringe needles. This micro extraction technique was applied to the analysis of pesticides in water. Important parameters influencing the extraction such as sample velocity, extraction time and also the desorption parameters were investigated and optimized. Automation of this technique was realized using a conventional automatic sampler. Limits of detection were improved using the multiple extraction / desorption technique. Chromatographic data and limits of detection were compared with those obtained by solid phase micro extraction (SPME). Using a needle with a 7 μm film yielded limits of detection varying from 0.001–0.1 μg/L and were in the same range as those resulting from the extraction using a 100 μm polydimethylsiloxane (PDMS) SPME fiber. The main advantages of the needle extraction technique were the significantly higher extraction speed and the practical aspects of a stable steel needle compared to those of a fragile fiber. The extraction speed using a needle with a ¶7 μm film was up to five times higher than the speed of SPME using a 100 μm PDMS fiber. The steel needle could be stressed mechanically in a higher extent than a SPME fiber. Sample volumes and aliquots of liquid media could be handled and moved from one bottle to another using the automatic sampler.  相似文献   

19.
A rapid, accurate and sensitive method for simultaneous determination of 15 steroidal hormones including four estrogens (estrone, 17β-estradiol, 17α-ethynylestradiol, estriol) and eleven progestogens (17β-estradiol-3-benzoate, 19-norethindrone, gestodene, levonorgestrel, medroxyprogesterone, cyproterone acetate, megestrol-17-acetate, progesterone, norethindrone acetate, chlormadinone-17-acetate, and hydroxy progesterone caproate) in environmental waters was developed by coupling solid-phase disk extraction (SPDE) to ultra performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) with electrospray ionization. Among three types of extraction tested (C8 SPDE, C18 SPDE and C18 SPE), the most satisfactory result was achieved using C18 SPDE for its satisfactory recovery (75.6 to 101.4%) and short extraction time (15 min for 1 L deionised water). The validity of this method was investigated and good analytical performance for all the analytes was obtained, including low limits of method detection (0.5–3.4 ng/L) and excellent linear dynamic range (1.0–50.0 ng/L). The method was applied to determine the steroidal hormones in 10 environmental waters including tap water, river water, lake water and waste water in Beijing. No progestogen was detected in all samples and estrone, estriol, 17α-ethynylestradiol were found in most samples at levels between 1.8 and 127.9 ng/L.  相似文献   

20.
The present study describes a method based on headspace-solid-phase dynamic extraction (HS-SPDE) followed by GC/MS for the qualitative and quantitative analysis of benzene, toluene, ethylbenzene, o-, m- and p-xylene (BTEX), and n-aldehydes (C(6)-C(10)) in water. To enhance the extraction capability of the HS-SPDE a new cooling device was tested that controls the temperature of the SPDE needle during extraction. Extraction and desorption parameters such as the number of extraction cycles, extraction temperature, desorption volume and desorption flow rate have been optimized. Detection limits for BTEX ranged from 19 ng/L (benzene) to 30 ng/L (m/p-xylene), while those for n-aldehydes ranged from 21 ng/L (n-heptanal) to 63 ng/L (n-hexanal). At a concentration level of 2 microg/L, the relative standard deviations (RSDs) for BTEX ranged from 3.9% (benzene) to 15.3% (ethylbenzene), while RSDs for n-aldehydes were between 6.1% (n-octanal) and 16.5% (n-hexanal) (n=7). Best results were obtained when the analyzed water samples were heated to 50 degrees C. At a water temperature of 70 degrees C GC responses decreased for all analyzed compounds. At a defined water temperature, a significant improvement of the GC response was achieved by cooling of the SPDE fiber during water extraction in comparison to an extraction keeping the fiber at room temperature. Evaluating the extraction cycles, for BTEX, the sensitivity was almost similar using 20, 40 and 60 extraction cycles. In contrast, the highest GC responses for n-aldehydes were achieved by the use of 60 extraction cycles. Optimizing the desorption parameters, best results were achieved using the smallest technical available desorption volume of 500 microL and the highest technical desorption flow rate of 50 microL/s. The method was applied to the analysis of melted snow samples taken from the Jungfraujoch, Switzerland (3580 m asl), revealing the presence of BTEX and aldehydes in snow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号